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Spranger MD, Kaur J, Sala-Mercado JA, Krishnan AC, Abu-
Hamdah R, Alvarez A, Machado TM, Augustyniak RA, O’Leary
DS. Exaggerated coronary vasoconstriction limits muscle metabore-
flex-induced increases in ventricular performance in hypertension. Am
J Physiol Heart Circ Physiol 312: H68–H79, 2017. First published
October 21, 2016; doi:10.1152/ajpheart.00417.2016.—Increases in
myocardial oxygen consumption during exercise mainly occur via
increases in coronary blood flow (CBF) as cardiac oxygen extraction
is high even at rest. However, sympathetic coronary constrictor tone
can limit increases in CBF. Increased sympathetic nerve activity
(SNA) during exercise likely occurs via the action of and interaction
among activation of skeletal muscle afferents, central command, and
resetting of the arterial baroreflex. As SNA is heightened even at rest
in subjects with hypertension (HTN), we tested whether HTN causes
exaggerated coronary vasoconstriction in canines during mild tread-
mill exercise with muscle metaboreflex activation (MMA; elicited by
reducing hindlimb blood flow by ~60%) thereby limiting increases in
CBF and ventricular performance. Experiments were repeated after
�1-adrenergic blockade (prazosin; 75 �g/kg) and in the same animals
following induction of HTN (modified Goldblatt 2K1C model). HTN
increased mean arterial pressure from 97.1 � 2.6 to 132.1 � 5.6
mmHg at rest and MMA-induced increases in CBF, left ventricular
dP/dtmax, and cardiac output were markedly reduced to only 32 � 13,
26 � 11, and 28 � 12% of the changes observed in control. In HTN,
�1-adrenergic blockade restored the coronary vasodilation and in-
creased in ventricular function to the levels observed when normo-
tensive. We conclude that exaggerated MMA-induced increases in
SNA functionally vasoconstrict the coronary vasculature impairing
increases in CBF, which limits oxygen delivery and ventricular
performance in HTN.

NEW & NOTEWORTHY We found that metaboreflex-induced
increases in coronary blood flow and ventricular contractility are
attenuated in hypertension. �1-Adrenergic blockade restored these
parameters toward normal levels. These findings indicate that the
primary mechanism mediating impaired metaboreflex-induced in-
creases in ventricular function in hypertension is accentuated coronary
vasoconstriction.

Listen to this article’s corresponding podcast at http://ajpheart.podbean.
com/e/metaboreflex-induced-functional-coronary-vasoconstriction/.

exercise pressor reflex; coronary blood flow; contractility; hyperten-
sion

WHEN OXYGEN DEMAND of working skeletal muscle exceeds
oxygen supply, the muscle releases metabolites [e.g., hydrogen

ion (13, 116), potassium ion (72), diprotonated phosphate (13,
107), lactic acid (21, 63, 96, 105, 108), and ATP (43, 70, 112)],
which stimulate metabolically sensitive group III/IV afferents
(2, 5, 15, 63, 76, 96), reflexively increasing sympathetic out-
flow from the brainstem, termed the muscle metaboreflex (12).
When engaged during submaximal dynamic exercise, the
metaboreflex increases heart rate (HR) and ventricular contrac-
tility resulting in large increases in cardiac output (CO) and
mean arterial pressure (MAP) (3, 7, 19, 25, 71, 89, 97, 111,
117). The rise in CO is driven by marked increases in HR (4,
19, 29, 50, 88, 99, 117) coupled with a sustained or slight
increase in stroke volume (SV) (16, 19, 89, 99, 106, 111),
which is supported via enhanced ventricular contractility (dP/
dtmax) (16, 18, 51, 89, 99), lusitropy (dP/dtmax) (51, 111), and
central blood volume mobilization (103). The increase in CO is
the primary mechanism mediating the rise in arterial blood
pressure as little if any net peripheral vasoconstriction is
observed (8, 18, 42, 51, 106, 111, 117). Therefore, the muscle
metaboreflex has been described as a flow-sensitive, flow-
raising reflex (92) that works to improve oxygen supply to the
ischemic working muscle (90). However, the capacity of the
metaboreflex to restore blood blow to the ischemic working
muscle may be self-limiting (56).

During exercise, increased cardiac oxygen demand is met
primarily via increases in coronary blood flow (CBF) inasmuch
as oxygen extraction is already ~80% at rest (24, 26, 115). The
rise in CBF is achieved via coronary metabolic and feed-
forward, �2-adrenergic vasodilation (24, 26, 115), which is
restrained by the vasoconstrictor actions of the rise in cardiac
sympathetic nerve activity (SNA) (41). Muscle metaboreflex
activation increases CBF solely via the large increase in MAP;
despite large increases in cardiac work (greater CO pumped
against a higher afterload), little if any coronary vasodilation
occurs due to enhanced �1-adrenergic-mediated coronary va-
soconstriction (6, 16, 91). Blockade of the constrictor tone
increases CBF during muscle metaboreflex activation as now
substantial vasodilation is accompanied by the large pressor
response resulting in improved ventricular performance and
CO (16, 17, 91).

Resting SNA is heightened in hypertension (34, 38, 53, 74,
75, 78, 114). Moreover, an enhanced sympathetically mediated
coronary constrictor tone and restrained coronary metabolic
vasodilation during dynamic exercise have been demonstrated
in hypertension (39). However, recent studies support (14, 22,
35, 80, 101) and refute (95) accentuated muscle metaboreflex
function in hypertension. We previously reported attenuated
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metaboreflex-induced chronotropic and inotropic responses in
hypertension (98). In the present study, we hypothesized that
exaggerated coronary vasoconstriction contributes to the im-
paired ability to increase ventricular performance during mus-
cle metaboreflex activation in hypertension.

METHODS

Experimental subjects. Six adult mongrel canines (20–25 kg) were
selected for their willingness to run on a motor-driven treadmill. Due
to availability issues with our vendor all animals were female. We
have previously shown that gender does not affect the strength or
mechanisms of the muscle metaboreflex (67). The animals exercised
voluntarily and no negative reinforcement techniques were utilized.
All protocols were approved by the Institutional Animal Care and Use
Committee (IACUC) of Wayne State University and complied with
the National Institutes of Health Guide to the Care and Use of
Laboratory Animals.

Surgical procedures. Each animal was instrumented with chronic,
indwelling cardiovascular devices following two sterile surgical pro-
cedures: left thoracotomy followed by a left flank retroperitoneal
surgery. The animals recovered a minimum of 10 days before the
second surgery and a minimum of 7 days before the first experiment.
During preoperative care, the animals were initially sedated with
acepromazine (0.4–0.5 mg/kg im) followed by combined treatment of
ketamine and diazepam (5.0 and 0.22 mg/kg iv, respectively). Anes-
thesia was maintained with isoflurane gas (1–3%). The animals
received preoperative administration of cefazolin (30 mg/kg iv),
carprofen (analgesic, 2.0 mg/kg iv), buprenorphine (analgesic, 0.01
mg/kg im), and fentanyl [analgesic, 125–175 �g/h (72 h) TDD).
Before the left thoracotomy, animals received selective intercostal
nerve blockade with bupivacaine HCl (2.0 mg/kg). Following each
surgical procedure, animals received cefazolin (30 mg/kg iv) and
prophylactic cephalexin [antibiotic, 30 mg/kg (b.i.d.) po] therapy for
the term of the experimental protocol. During the 12 h postoperative
period, animals were closely monitored and received buprenorphine
and acepromazine (0.05 and 0.5 mg/kg iv, respectively) as needed to
control any potential discomfort. For the following 10 days, animals
received carprofen [4 mg/kg (OPD) po].

In the first surgical procedure, the thoracic cavity was opened
via a left thoracotomy (4th intercostal space). The pericardium was
cut and reflected to expose the heart. An ultrasonic perivascular
flow probe (20PAU; Transonic Systems) was positioned around the
ascending aorta to measure CO. Approximately 10 cm caudal to
the thoracotomy incision, an implantable telemetry blood pressure
transmitter (TA11 PA-D70; Data Sciences International) was teth-
ered subcutaneously. The catheter of the transmitter was tunneled
into the thoracic cavity through the 7th intercostal space and the tip
was inserted and secured inside the left ventricle for measuring left
ventricular pressure (LVP). Lastly, an ultrasonic perivascular flow probe
(3PSB; Transonic Systems) was positioned around the circumflex artery
to measure CBF. The pericardium was loosely reapproximated, the
cables were tunneled subcutaneously and exteriorized between the scap-
ulae and the chest was closed in layers.

In the second surgical procedure, an incision was made in the
left flank cranial to the iliac crest. An ultrasonic perivascular flow
probe (10PAA; Transonic Systems) was positioned around the
terminal aorta for measuring hindlimb blood flow (HLBF). All side
branches of the terminal aorta, between the common iliacs and the
flow probe, were ligated and severed. In addition, two perivascular
hydraulic occluders (8 –10 mm; DocXS Biomedical Products) were
positioned around the terminal aorta (distal to the flow probe) to provide
the means to incrementally reduce HLBF. A 19-gauge polyvinyl catheter
(Tygon, S54-HL; Norton) was advanced through a ligated lumbar artery
and secured into the terminal aorta cranial to the probe and occluders to
measure arterial pressure. Lastly, the left renal artery was exposed and

an ultrasonic perivascular flow probe (4PSB; Transonic Systems) was
positioned around the vessel to measure renal blood flow (RBF). A
perivascular hydraulic occluder (4–6 mm; DocXS Biomedical Prod-
ucts) was positioned around the renal artery (distal to the flow probe)
to provide the means to reduce RBF. The cables and vascular occluder
tubing were tunneled subcutaneously and exteriorized between the
scapulae and the abdomen was closed in layers.

Data acquisition. After complete postoperative recovery, each
animal was brought into the laboratory and allowed to roam freely and
acclimate for approximately 15–20 min. Following this period, the
animal was directed onto the treadmill. The CO, RBF, CBF, and
HLBF flow probe cables were connected to transit-time perivascular
flow meters (TS420; Transonic Systems). The LVP transmitter was
turned on and the signal was collected via telemetry (Data Sciences
International). The arterial catheter was connected to a pressure
transducer (Transpac IV; ICU Medical). All aforementioned hemo-
dynamic variables, in addition to MAP (calculated) and HR (triggered
by the CO signal), were monitored as beat-by-beat averages and
real-time waveforms by a data acquisition system (LabScribe; iWorx)
and recorded for subsequent offline analysis.

Induction of hypertension. Hypertension was induced via a modi-
fied (2K1C) Goldblatt model (31). After competition of control
experiments, blood flow to the left kidney was reduced to a target
level of ~30% of baseline via partial inflation of the renal vascular
occluder. The level of RBF was checked at least two times per day and
the vascular occluder adjusted until flow was stable. Hypertension
gradually developed over the next several weeks. We defined hyper-
tension as a systolic pressure �140 mmHg and a diastolic pressure
�90 mmHg. The experiments were repeated after 34.4 � 1.6 days of
sustained hypertension. Thus the experiments were longitudinal in
nature as each animal served as its own control.

Experimental procedures. Both control and experimental proce-
dures began with the animal standing unrestrained and still on the
treadmill until all resting hemodynamic data were stable (typically
5–10 min). The treadmill was turned on and the speed was gradually
increased to 3.2 km/h at 0% grade (mild exercise for a canine). Steady
state was generally reached within 3–5 min. The muscle metaboreflex
was engaged via partial reductions in HLBF during mild, dynamic
exercise.

Data analysis. CO, CBF, HLBF, RBF, LVP, HR, and MAP data
were continuously recorded during each experimental procedure.
Other hemodynamic parameters were calculated during offline data
analysis [e.g., SV, dP/dtmax, dP/dtmin, total peripheral resistance
(TPR; MAP/CO), nonischemic vascular conductance (NIVC), vascu-
lar conductance to all beds except the ischemic hindlimbs (CO-HLBF/
MAP), coronary vascular conductance (CVC; CBF/MAP), and car-
diac power (CP; MAPxCO/451)] (28). Muscle metaboreflex responses
were quantified via analysis of the stimulus-response relationships via
multiple linear regression analysis as described by Wyss et. al (117).
Due to technical difficulties, we were only able to obtain dP/dtmax data
for five animals. One-minute averages of steady-state data were
calculated at rest, during exercise, and during metaboreflex activation.
Mean values were averaged across all animals to obtain the population
mean of the study.

Statistical analysis. Averaged responses for each animal were
analyzed with Systat software (Systat 11.0). P � 0.05 was set to
determine statistical significance. A two-way repeated-measures
ANOVA was used to compare hemodynamic data for time and/or
conditional effects. In the event of a significant time-condition inter-
action, a C-matrix test for simple effects was performed. Data are
reported as means � SE.

RESULTS

Chronic reduction in RBF caused systemic hypertension,
which was due to increased TPR as CO remained unchanged
from normal levels (Table 1).
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Average steady-state MAP, HR, SV, CO, and NIVC (Fig. 1)
and CBF, CVC, dP/dtmax, and CP (Fig. 2) values are shown
during rest, mild exercise, and muscle metaboreflex activation
in control and after �1-adrenergic blockade in normal animals
and in the same animals after induction of hypertension.

Normal: Control vs. �1-adrenergic blockade. The effects of
�1-adrenergic blockade on cardiovascular parameters at rest,
during exercise, and during peak metaboreflex activation in
control experiments were similar to those we have previously
observed in other studies (16, 55, 91). Briefly, HR, CO, NIVC,
CBF, CVC, dP/dtmax, and CP increased from rest to exercise,
while MAP and SV remained unchanged. Metaboreflex acti-
vation elicited increases in all cardiovascular parameters. Fol-
lowing �1-adrenergic blockade, resting MAP and SV were
lower; HR and CVC were higher; and CO, NIVC, CBF,
dP/dtmax, and CP were similar with respect to control. MAP,
HR, CO, NIVC, CBF, CVC, dP/dtmax, and CP increased from
rest to exercise, while SV remained unchanged. Metaboreflex
activation increased all cardiovascular parameters. MAP and
SV were lower; HR, CO, NIVC CBF, CVC, and dP/dtmax were
higher; and CP was similar with respect to control during
metaboreflex activation.

Hypertension: Control vs. �1-adrenergic blockade. After
induction of hypertension, HR, CO, NIVC, CBF, CVC, dP/
dtmax, and CP increased from rest to exercise, while MAP and
SV remained unchanged. Metaboreflex activation elicited in-
creases in MAP, HR, CO, NIVC, CBF, dP/dtmax, and CP but
did not affect SV or CVC. Following �1-adrenergic blockade,
resting MAP was lower; NIVC was higher; and HR, SV, CO,
CBF, CVC, dP/dtmax, and CP were similar with respect to
control. HR, CO, NIVC, CBF, CVC, and CP increased from
rest to exercise, while MAP, SV, and dP/dtmax remained
unchanged. Metaboreflex activation increased MAP, HR, CO,
NIVC, CBF, CVC, dP/dtmax, and CP but did not affect SV. HR,
CO, NIVC, CBF, CVC, dP/dtmax, and CP were higher, SV
lower, and MAP similar with respect to control during
metaboreflex activation.

Average steady-state changes in MAP, HR, SV, CO, and
NIVC (Fig. 3) and CBF, CVC, dP/dtmax, and CP (Fig. 4) are
shown from mild exercise to muscle metaboreflex activation in
control and after �1-adrenergic blockade in normal animals and
in the same animals after induction of hypertension.

Normal: Control vs. �1-adrenergic blockade. Metaboreflex-
induced increases in MAP were attenuated; CO, NIVC, CBF,
CVC, and dP/dtmax were augmented; and HR, SV, and CP were
not significantly affected following �1-adrenergic blockade.

Hypertension: Control vs. �1-adrenergic blockade. Metabo-
reflex-induced increases in HR, CO, NIVC, CBF, CVC, dP/
dtmax, and CP were significantly greater, and MAP and SV
were not significantly affected following �1-adrenergic block-
ade.

Normal vs. hypertension. Metaboreflex-induced increases in
MAP, HR, SV, CO, NIVC, CBF, dP/dtmax, and CP were

significantly attenuated following induction of hypertension,
while CVC was unaffected. Following metaboreflex activation
after �1-adrenergic blockade, increases in SV were signifi-
cantly lower and MAP, HR, CO, NIVC, CBF, CVC, dP/dtmax,
and CP were not significantly different from normal levels.

Figure 5, left, shows stimulus-response relationships for
MAP, CO, HR, CBF, CVC, and dP/dtmax during free-flow
exercise (mild exercise with no reduction in HLBF), threshold
(intersection of the 2 linear regression lines), and maximal
metaboreflex activation (metaboreflex-induced response at
lowest imposed level of HLBF). The slopes of the metabore-
flex-response lines are indicative of the gain of the metabore-
flex for each individual cardiovascular parameter. Figure 5,
right, shows slopes of the metaboreflex-induced response lines
for MAP, CO, HR, CBF, CVC, and dP/dtmax in control and
after �1-adrenergic blockade in normal animals and in the same
animals after induction of hypertension. Following �1-adren-
ergic blockade, the slopes of the metaboreflex-induced re-
sponse lines for CO, HR, CBF, CVC, and dP/dtmax were
significantly higher while MAP was unchanged. These slopes
were significantly lower for all cardiovascular parameters fol-
lowing induction of hypertension, while �1-adrenergic block-
ade fully restored the slopes (except CO; P � 0.042) to normal
levels following �1-adrenergic blockade.

Figure 6 shows the relationship between CVC and CP in one
animal. A straight line was ascribed from rest to free-flow
exercise. Linear regression analysis was used fit a straight line
through free-flow exercise and all subsequent reductions in
HLBF. Following graded reductions, muscle metaboreflex ac-
tivation elicited substantial increases in CP with only small
increases in CVC.

Figure 7 shows the relationship between CVC and CP
before (circles) and after (triangles) induction of hyperten-
sion in control (left: solid lines) and following �1-adrenergic
blockade (right: dashed lines) during rest, free-flow exer-
cise, and max. After induction of hypertension, the slope of
the relationship (from free-flow exercise to max) was sig-
nificantly lower and the increase in CP was markedly
attenuated. Following �1-adrenergic blockade, the slope of
the relationship was significantly shifted upward and not
any different than during �1-adrenergic blockade before
induction of hypertension; however, the entire line was
shifted toward lower CVC. Moreover, the increase in CP
was not any different following �1-adrenergic blockade
before and after induction of hypertension.

Figure 8 shows the ratio of the changes in CVC and CP from
free-flow exercise to max (i.e., �CVC:�CP) in control and
following �1-adrenergic blockade before and after induction of
hypertension. Following �1-adrenergic blockade, �CVC:�CP
was significantly greater than in control. Following induction
of hypertension, �CVC:�CP was significantly reduced. Fol-
lowing �1-adrenergic blockade, �CVC:�CP was not any dif-

Table 1. MAP, CO, and TPR at rest in the same animals before (normal) and after induction of hypertension

Normal Hypertension

MAP, mmHg CO, l/max TPR, mmHg·l	1·max	1 MAP, mmHg CO, l/max TPR, mmHg·l	1·max	1

Rest 97.1 � 2.6 3.44 � 0.18 28.7 � 1.9 132.1 � 5.6* 3.56 � 0.17 37.6 � 2.4*

Values are means � SE. MAP, mean arterial pressure; CO, cardiac output; TPR, total peripheral resistance. *P � 0.05 between normal and hypertension.
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ferent than during �1-adrenergic blockade before induction of
hypertension.

Figure 9 shows the relationship between dP/dtmax and CBF
in control and after �1-adrenergic blockade in normal animals
and in the same animals after induction of hypertension. The
slope of the relationship between dP/dtmax and CBF was
exceedingly linear with all data points considered. After induc-
tion of hypertension, metaboreflex-induced increases in both
dP/dtmax and CBF were significantly attenuated. However,

metaboreflex-induced increases in both dP/dtmax and CBF were
not significantly different following �1-adrenergic blockade
before and after induction of hypertension.

DISCUSSION

Our major new findings are that increases in CBF during
metaboreflex activation are attenuated and the ability to in-
crease ventricular contractility is reduced after induction of
hypertension. Blockade of �1-adrenergic receptors restored the
increases in CBF and ventricular function toward normal levels
indicating that the primary mechanism mediating the impaired
metaboreflex-induced increases in ventricular function in hy-
pertension is accentuated coronary vasoconstriction. In addi-
tion, metaboreflex-induced increases in CO and MAP are also
attenuated in hypertension, and therefore the ability of the
reflex to restore blood flow to ischemic working muscle is also
likely impaired.

Coronary blood flow during exercise. The increase in myo-
cardial oxygen demand during submaximal dynamic exercise
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is principally met by increases in CBF inasmuch as myocardial
oxygen consumption is highly blood flow dependent since
oxygen extraction is already near maximal at rest (24, 26, 115).
The rise in CBF is largely mediated via vasodilation as only
modest increases in MAP occur (32). The rise in cardiac SNA
with exercise acts both to promote coronary vasodilation via
increasing cardiac work (as well as feed-forward, �2-adrgen-
ergic receptor-mediated vasodilation) as well as coronary va-
soconstriction via activation of vascular �1-adrenergic recep-
tors. Gwirtz and colleagues demonstrated an �1-adrenergic-
mediated coronary constrictor tone during dynamic exercise in
normal animals (23, 41) and in animals with renovascular
hypertension (39). Moreover, a coronary constrictor tone dur-
ing exercise has also been shown to attenuate increases in CBF

(40, 41, 47, 60, 85, 91), myocardial oxygen delivery (47),
ventricular function (16, 40, 41, 60), and CO (16, 60). Para-
doxically, in normal animals, this constrictor tone has been
suggested to play a beneficial role in redistributing left-ven-
tricular CBF from the epicardium to the more metabolically
challenged subendocardium (27, 49); however, this hypothesis
is not broadly accepted (10, 44).

Following muscle metaboreflex activation, substantial in-
creases in cardiac SNA, CO, and afterload increase myocardial
work and oxygen demand which is met by increases in CBF.
These increases in CBF are solely driven by increases in MAP
as little, if any, coronary vasodilation occurs. Coutsos et al.
(16) showed in normal dogs that metaboreflex-mediated in-
creases in CVC and CBF markedly improved following �1-
adrenergic blockade and the reflex increases in ventricular
function were accentuated. Metaboreflex activation in heart
failure causes frank coronary vasoconstriction (17). Pharma-
cological blockade of this metaboreflex-induced neurogenic
vasoconstriction partially restores ventricular function in heart
failure (17).

Effect of hypertension on the muscle metaboreflex. Is muscle
metaboreflex function attenuated in hypertension? While few
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studies have investigated the effects of hypertension on
metaboreflex control of cardiovascular function, most report
that its function is accentuated (22, 35, 69, 79, 101) rather than
attenuated (95). We analyzed the gain (or strength) of
metaboreflex-mediated cardiovascular responses in hyperten-
sion by determining the slope of the metaboreflex-induced
response line for each parameter measured. After induction of
hypertension, the slopes were significantly lower for all car-
diovascular parameters (see Fig. 5) indicating that metabore-
flex function is attenuated in hypertension. However, following
�1-adrenergic blockade the slopes of all metaboreflex-induced
response lines were fully restored to the levels observed in
control experiments following �1-adrenergic blockade. These

data suggest that inotropic function is attenuated during
metaboreflex activation in hypertension due to a restriction in
CBF stemming from exaggerated coronary constrictor tone,
not an attenuation in metaboreflex function per se nor any
inherent reduction in intrinsic myocardial function (e.g., heart
failure). Reduced CBF may also impair ventricular diastolic
function and thereby limit increases in SV via impaired ven-
tricular relaxation.

Coronary blood flow: Ventricular function interrelationship.
While changes in CBF can directly influence ventricular func-
tion, changes in ventricular function can indirectly influence
CBF via changes in coronary metabolic vasodilation. As an
increase in perfusion pressure can increase CBF independent of
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any change in coronary vasomotor tone (6), the extent of
coronary vasodilation can only accurately be determined by
calculating changes in conductance (or resistance) (87). Feigl
and colleagues (32, 33) have shown the utility of quantifying
coronary vasodilation as a function of myocardial oxygen
consumption. As in our previous studies (16, 17), we used CP,
which is well correlated to myocardial oxygen consumption
(58). In normal animals, CVC increased from rest to exercise
and a small, further increase occurred with metaboreflex acti-
vation similar to the response observed previously (with ex-
ception of the small increase in CVC, which was not statisti-
cally significant in our previous study). After induction of
hypertension, the slope of the relationship (from free-flow
exercise to maximal metaboreflex activation) was significantly
lower and the increase in CP was markedly attenuated indicat-
ing reduced myocardial oxygen delivery as a result of a
restrained coronary vasodilation. Following �1-adrenergic
blockade, the slope of the relationship was significantly shifted
upward and not significantly different than during �1-adrener-
gic blockade before induction of hypertension. Moreover, the
increase in CP was not significantly different following �1-

adrenergic blockade before and after induction of hyperten-
sion. These findings demonstrate that impaired metaboreflex-
induced increases in CP are largely, if not solely, caused by
heightened �1-adrenergic-mediated coronary vasoconstriction
in hypertension.

An increase in CBF can improve ventricular function via an
increase in myocardial oxygen delivery (86). We analyzed the
relationship between ventricular function and coronary perfusion
via linear regression of the relationship between dP/dtmax vs. CBF
as described previously (17). This relationship was exceptionally
linear. After induction of hypertension, metaboreflex-induced in-
creases in both dP/dtmax and CBF were significantly attenuated,
without any change in the slope of the relationship. Following
�1-adrenergic blockade, metaboreflex-induced increases in dP/
dtmax and CBF were restored to the same levels following
�1-adrenergic blockade before induction of hypertension.
These data support our hypothesis that exaggerated coronary
vasoconstriction in hypertension with metaboreflex activa-
tion restrains coronary perfusion thereby limiting myocar-
dial oxygen delivery and increases in ventricular function.
While the highly linear relationship between dP/dtmax and
CBF suggests that ventricular function is intimately depen-
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dent on changes in CBF, the fact that the slope of this
relationship did not change after induction of hypertension
suggests that most, if not all, of the ventricular impairment
observed in this study was solely due to exaggerated coronary
vasoconstriction, not myocardial dysfunction per se. Coutsos et
al. (17) reported that exaggerated metaboreflex-mediated cor-
onary vasoconstriction attenuates the rise in CBF and impairs
increases in ventricular function in heart failure. Furthermore,
they demonstrated that this impairment in ventricular function
was partially ameliorated following �1-adrenergic blockade.
They concluded that the impaired ventricular function in heart
failure was due to both intrinsic ventricular dysfunction as well
as exaggerated coronary vasoconstriction.

Perspectives. The pathology of hypertension is wide-ranging.
Structural and/or functional changes have been well documented
in the heart and the vasculature (93). Moreover, alterations in
arterial baroreflex (34, 118) and muscle metaboreflex function
(22, 35, 68, 80, 95, 101) as well as brainstem processing of this
reflex information have been demonstrated (36). The attenuation
of chronotropic and inotropic function after induction of hyper-
tension observed in the present study is likely not due to overt
pathology of the heart and the vasculature as �1-adrenergic block-
ade fully restored chronotropic and inotropic function to the same
levels observed after �1-adrenergic blockade before induction of
hypertension. The arterial baroreflex buffers muscle metabore-
flex-mediated pressor responses by attenuating metaboreflex-
induced peripheral vasoconstriction (59, 104). There are re-
ports of reduced baroreflex function in hypertension (54, 81,
110, 118); however, to the best of our knowledge, there are no
studies demonstrating accentuated baroreflex function. There-
fore, it is unlikely that the attenuated cardiovascular responses
reported in the present study are a result of enhanced arterial
baroreflex buffering of the muscle metaboreflex. Moreover,
Smith et al. (109) demonstrated that impaired baroreflex func-
tion in hypertension has little, if any, effect on skeletal muscle
reflex function. Dysfunctional metaboreflex afferent signal
processing could at least partially explain the attenuated reflex-
mediated increases in cardiovascular function; however, data

suggest that metaboreceptors are actually sensitized in hyper-
tension (79). Previous studies have demonstrated impaired
cardiac responses potentially stemming from reduced �-adren-
ergic receptor function (11, 120) and density (77).

Hypertensive subjects have higher resting sympathetic ac-
tivity, which can increase to dangerously high levels during
strenuous exercise causing exaggerated increases in arterial
pressure and heart rate and intense peripheral vasoconstriction.
These pathological responses to exercise can be used as inde-
pendent risk factors for cardiovascular mortality (57, 61, 62,
64, 82–84, 100). Indeed, “the ACC/AHA 2002 Guideline Update
for Exercise Testing” warns that “exercise tolerance is decreased
in patients with poor blood pressure control and severe systemic
hypertension may cause exercise-induced ST depression in the
absence of atherosclerosis” (30). Exaggerated coronary vasocon-
striction during metaboreflex activation could have devastating
consequences for hypertensive patients leading to arrhythmias,
coronary artery vasospasm, and sudden cardiac death. Therapies
aimed at lowering sympathetic activation in response to exer-
cise or at limiting the resultant coronary vasoconstriction could
help in preventing adverse responses to exercise in these
patients.

Potential limitations. All animals in the present study were
female due to availability with our vendor. Data were not
collected from animals during estrus. Our laboratory has
shown that muscle metaboreflex function is not influenced by
gender in normal canines (67).

Systemic �1-adrenergic blockade can alter loading condi-
tions via reduced total peripheral resistance. Gwirtz and col-
leagues (23, 40, 60) administered prazosin via the intracoro-
nary route. However, results from such studies on changes in
ventricular function following �1-adrenergic blockade are lim-
ited to the particular segment of the left ventricle infused with
drug. In the present study, we were interested in the effects of
�1-adrenergic blockade on global left-ventricular function, and
therefore, we infused prazosin systemically. We employed a
selective, �1-adrenergic blocker as several studies have dem-
onstrated that �2-adrenergic receptors have negligible effects
on coronary vasomotor tone during exercise (9, 20, 40, 41,
113). However, some studies have shown that, along with
�1-adrenergic receptors, �2-adrenergic receptors also play an
important role in the modulation of coronary vasomotor tone
(46, 102). The relative roles of �1- and �2-receptors as well as
others mediating vasoactive responses from other neurotrans-
mitters and circulating hormones (e.g., neuropeptide Y, vaso-
pressin, angiotensin II, etc.) have yet to be elucidated.

Following �1-adrenergic blockade in normal animals, MAP
was lower at rest, during exercise and during exercise with
metaboreflex activation with respect to control. After induction
of hypertension in the same animals, MAP was lower at rest
and during exercise with respect to control. Interestingly,
during exercise with metaboreflex activation, MAP following
�1-adrenergic blockade was not any different than control
(likely due to the blunted rise NIVC in hypertension). Our
hypothesis was that increases in ventricular function would be
impaired due to exaggerated coronary vasoconstriction during
metaboreflex activation in hypertension. Therefore, the major
potential concern with systemic prazosin administration would
be its effects on our index of contractility (dP/dtmax) as this
measurement is sensitive to loading conditions. However,
while changes in preload can significantly affect dP/dtmax (94),
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changes in afterload have been shown to have little, if any,
direct effect on this parameter (1, 52, 73, 94).

While nonselective �-adrenergic blockers reduce vasomotor
tone by antagonizing both coronary �1- and �2-adrenergic
receptors, it is well established that these agents also antago-
nize �2-adrenergic receptors on presynaptic nerve terminals,
countering the negative feedback inhibitor effect of norepi-
nephrine on the receptor, thereby leading to enhanced norepi-
nephrine release (65, 66, 119). Heyndrickx et al. (48) reported
elevated coronary sinus norepinephrine following selective
�2-adrenergic blockade (yohimbine) in conscious canines
causing enhanced chronotropic and inotropic effects during
exercise. Cardiac presynaptic �1-adrenergic receptors have not
been characterized. However, there are whole animal studies
that support (37) and refute (41, 48) the existence of a negative
feedback inhibitor effect of norepinephrine on a purported
cardiac presynaptic �1-adrenergic receptor. As we employed a
selective �1-adrenergic blocker (prazosin) in the present study,
we do not expect that our chronotropic and inotropic data were
influenced by this phenomenon. With that said, the perplexing
rise in heart rate we observed following prazosin could be
explained by this mechanism, and so we cannot entirely rule it
out. Furthermore, the relative roles of �1- and �2-adrenergic
receptors (as well as the receptors for other potential neu-
rotransmitters, neuromodulators, and circulating vasoactive
hormones such as NPY, angiotensin II, adenosine, vasopressin,
etc.) may change during the development of hypertension.
Clearly, further studies are necessary to determine the relative
roles of all major vasoactive substances in the control of
coronary blood flow during exercise and the effects of hyper-
tension on these mechanisms.

In summary, we found that during metaboreflex activation
coronary vasoconstriction is accentuated in hypertension, which
markedly restrains coronary perfusion and thereby limits myocar-
dial oxygen delivery and increases in ventricular function during
submaximal dynamic exercise. Coronary vasoconstriction in hy-
pertension could partially explain exercise intolerance and poten-
tially precipitate adverse cardiovascular events during exercise
such as coronary vasospasms, arrhythmias, myocardial ischemia,
or sudden cardiac death (45).
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