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Abstract 

Energy calculations based on MM/GBSA were employed to study various zinc finger protein motifs 

binding to DNA. Mutants of both the DNA bound to their specific amino acids were studied.  Calculated 

energies gave evidence for a relationship between binding energy and affinity of zinc finger motifs to 

their sites on DNA. ΔG values were -15.82(12), -3.66(12) and ¬12.14(11.6) Kcal/mol for finger one, 

finger two and finger three respectively. The mutations in the DNA bases reduced the value of the 

negative energies of binding (maximum value for ΔΔG = 42Kcal/mol for F1 when GCG mutated to GGG, 

and ΔΔG = 22 Kcal/mol for F2, the loss in total energy of binding originated in the loss in electrostatic 

energies upon mutation(r= 0.98). The mutations in key amino acids in the zinc finger motif in positions -

1, 2, 3 and 6 showed reduced binding energies to DNA with correlation  coefficients between total free 

energy and electrostatic was 0.99 and with Van der Waal was 0.93. Results agree with experimentally 

found selectivity which showed that Arginine in position -1 is specific to G, while Aspartic acid (D) in 

position 2 plays a complicated role in binding. There is a correlation between the MD calculated free 

energies of binding and those obtained experimentally for prepared zinc finger motifs bound to triplet 

bases in other reports (D J Segal, Dreier, Beerli, & Barbas, 1999) , our results may help in the design of 

zinc finger motifs based on the established recognition codes based on energies and contributing energies 

to the total energy. 
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Introduction 

Cys2 His2 Zinc finger proteins (ZF) are known to bind specifically to DNA sequences in 

transcription factor IIIA (Pabo, Peisach, & Grant, 2001; Eustermann et al., 2011; Carlson et al., 

2010; Temiz & Camacho, 2009), they consist of two, three, or more fingers in the DNA binding 

protein. Each single finger domain consists of 30 amino acid residues with a ββα fold, the finger 

is stabilized by the structural zinc ion bound to two Histidine and two Cysteine residues in 

tetrahedral environment(Dreier, Segal, & Barbas, 2000; C O Pabo & Sauer, 1984). Naturally 

occurring ZF proteins in biological systems have been extensively studied and many x-ray 

crystal structures have been determined (Dreier et al., 2000; David J Segal, Crotty, Bhakta, 

Barbas, & Horton, 2006) . Progress in understanding protein-DNA recognition has made it 

possible to design many site specific regulatory ZF proteins that can alter gene expression in a 

specific way. Emergence of such systems has a wide range of important biomedical applications  

(Dreier et al., 2000; Ligands et al., 2004; Nakata et al., 2012; C O Pabo & Sauer, 1984; Carl O 

Pabo et al., 2001; Pavletich & Pabo, 1991; David J Segal et al., 2006). Also many other multi 

finger proteins were successfully engineered to bind specific DNA targets and this has a potential 

use in medicine (Dreier et al., 2000; Nakata et al., 2012; Carl O Pabo et al., 2001; D J Segal et 

al., 1999).  Zinc finger proteins have potential as DNA binding domains of novel transcription 

factors (Carlson et al., 2010; Eustermann et al., 2011; A. N. Temiz & Camacho, 2009) which 

help in the treatment of diseases by employing gene therapy, the advantage of  ZF proteins being 

their capability to bind larger binding sites(Nakata et al., 2012; Wolfe, Grant, Elrod-Erickson, & 

Pabo, 2001; Wolfe, Ramm, & Pabo, 2000) . 

The issue of specificity of ZF proteins is still not fully understood, specifically the 

accuracy of the predicted modularity of ZF binding to DNA sequences , which means the ability 
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to build segments from amino acids to form fingers and join the fingers together to fulfill certain 

function as engineered. The dissociation constants of many ZF-DNA sequences prepared by site 

directed mutagenesis were experimentally determined using gel shift mobility experiments 

(Dreier, Beerli, Segal, Flippin, & Barbas, 2001; Elrod-Erickson, Benson, & Pabo, 1998; Kang & 

Kim, 2000; Ligands et al., 2004; Carl O Pabo et al., 2001) with an error of ±		50% (Blancafort, 

Segal, & Barbas, 2004; Brayer, Kulshreshtha, & Segal, 2008; Cheng, Boyer, & Juliano, 1997; 

Dreier et al., 2000; Jamieson, Miller, & Pabo, 2003; Q. Liu, Xia, Zhong, & Case, 2002; Carl O 

Pabo et al., 2001; D J Segal et al., 1999; Uil, 2003; Wu, Yang, & Barbas, 1995). On the basis of 

these binding studies, amino acid residue-base specificities were assigned(Ligands et al., 2004; 

Carl O Pabo et al., 2001; D J Segal et al., 1999)  supported by the known crystal structures. 

However, discrepancy between the predicted specificity and the experimentally found ones in 

determined x-ray structures still exists (David J Segal et al., 2006). 

Statistically based specificities using the known ZF protein-DNA crystal structures derived by 

preparing databases and empirical rules there from were reported and compared with 

experimentally derived specificity with reasonable correlation(Desjarlais & Berg, 1992; Fu et al., 

2009; Gromiha, Siebers, Selvaraj, Kono, & Sarai, 2005; J. Liu & Stormo, 2008; Paillard & 

Lavery, 2004; Rohs, West, Liu, & Honig, 2009) . Strategies for selection of specific ZF binding 

have also been developed(Greisman, 1997) . 

Molecular dynamics has been employed as a powerful tool in solving complicated 

biological problems in protein folding, drug design, protein-protein interaction and DNA studies 

(Chang, McLaughlin, Baron, Wang, & McCammon, 2008; Fogolari, Brigo, & Molinari, 2003; 

Hou, Chen, McLaughlin, Lu, & Wang, 2006; Kollman et al., 2000; Naïm et al., 2007; Qiu, 

Shenkin, Hollinger, & Still, 1997; Rizzo, Aynechi, Case, & Kuntz, 2006; J. Wang, Morin, Wang, 
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& Kollman, 2001; W. Wang et al., 2001) . Free energy calculations have been used as a powerful 

tool to study protein-ligand (Kollman et al., 2000) and protein-protein interactions (Chang et al., 

2008; Hou et al., 2006).  The MM-GBSA (Molecular Mechanics Surfaces area-generalized Born 

model) was introduced and used successfully in evaluating binding energies of proteins and their 

complexes with reasonable correlation to experimental values and giving a sound explanation of 

the contributing energies (Naïm et al., 2007; Rizzo et al., 2006; J. Wang et al., 2001; W. Wang et 

al., 2001). This method relies on the contributions of Van der Waals (VdW) and electrostatic 

energies as well as on nonpolar and relative solute entropy(Fogolari et al., 2003; Qiu et al., 

1997). In this work, the VdW and electrostatic interactions between protein and ligand in the 

protein-DNA complex are calculated using molecular mechanics. The nonpolar contribution to 

solvation free energy is estimated employing the solvent accessible surface, and the electrostatic 

contribution to solvation is calculated by a continuum model (by solving the Generalized Born 

equation (Qiu et al., 1997). Entropy is usually calculated using normal mode calculation(Fogolari 

et al., 2003; Morozov, Havranek, Baker, & Siggia, 2005) . Snapshots are extracted from 

molecular dynamics trajectories and every snapshot is analyzed by MM/GBSA.  

Here we employ MM/GBSA in calculating the free energy of binding for different 

sequences of zinc finger proteins to various targets of base combinations of DNA. Then the 

contributing energies to the total free energy of binding are analyzed to explore the capability of 

this method in estimating the specificity of ZF fingers binding to DNA bases. The outcome of 

this work can be used as a measurement of the predictive power of MD and MM-GBSA in 

designing Zinc fingers which bind specifically to certain base combinations of target DNA. 

 Attempts were made to identify the important features responsible for DNA binding 

using x-ray structures and bioinformatics in order to establish a recognition code and to predict 
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specific binding. The extent to which these empirical rules can predict the capability of certain 

sequence to bind specifically to a designated DNA target so it can be used in zinc finger protein 

design was investigated. The indirect readout in the recognition process cannot be ignored and 

has been given attention (Rohs et al., 2009). In fact researchers, using selection strategies, have 

been able to develop new sequence specific DNA binding proteins which are capable of targeting 

unique sequences in the human genome with high affinity and modularity(Dreier et al., 2000; C 

O Pabo & Nekludova, 2000; C O Pabo & Sauer, 1984; Carl O Pabo et al., 2001; D J Segal et al., 

1999) . However, until now, no simple recognition code could be established because of the 

problems of cross strand, inter-helical contacts and the flexibility of orientation of the 

recognition helix (Dreier et al., 2000; C O Pabo & Nekludova, 2000; Wolfe et al., 2001, 2000), 

along with the possibility of finger rotation(David J Segal et al., 2006) . 

 In this work the emphasis is on molecular aspects of recognition of amino acid 

residues on zinc fingers to DNA bases, the approach depends on mutating either the amino acid 

residues and keeping the DNA bases unchanged or mutating the DNA bases and keeping the 

amino acid sequence in the wild type unchanged. In another experiment both the zinc finger key 

residues and the DNA bases were mutated in a way to optimize the binding specificity to imitate 

the experimentally obtained data by random selection and mutagenesis (D J Segal et al., 1999). 

 The outcome of our calculations indicated a strong dependence on electrostatic energy in 

the binding process of zinc fingers to DNA and a high sensitivity of the calculated energy values 

to mutations, giving an indication of the predictive power of MD and MM-GBSA in this case. It 

also proved to have sufficient resolution, in this case, to predict residue dependent changes in 

free energy that correlate with the experimental results of Segal and Pabo (Miller & Pabo, 2001; 

Carl O Pabo et al., 2001; D J Segal et al., 1999). Based on these results we assign a functional 
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dependence to each residue, which will help in the future design of zinc fingers capable of 

specific binding to DNA based on free energy of binding. 

Methods : 

Molecular dynamic simulations were performed using the Amber9.0 package (D. A. Case et al., 

2006; D.A. Pearlman et al., 1995).  Amber9 was used for MD simulations to optimize the zinc 

finger DNA complexes. A Zinc finger/DNA complex was downloaded from the PDB data bank 

(PDB code 1aay) with a resolution of 1.60Å. The PDB file was inspected, water and salt were 

removed and mutations were achieved using either pymol (DeLano, 2002) for the protein or 

using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and 

Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081) 

(Pettersen EF et al., 2004) for mutations in the DNA bases. Then Xleap (D. A. Case et al., 2006)  

was used to neutralize the system by adding sodium ions. The complex was solvated in 

aTIP3PBOX cubic water box with dimensions of 12.0 Å distance from solute. The structure was 

checked for errors and then converted to topology and coordinate files. Sander was used from the 

Amber9.0 package to minimize the structure. MD simulations were carried out under the NVT 

ensemble with heating, equilibration and production for 2 nanoseconds of simulation time. The 

output file was converted to PDB format using ambpdb from Amber and water was stripped out 

and the ions were removed, then the files were re-converted to topology and coordinate files in 

xleap and were used along with the Sander mdcrd output file in MM/GBSA to produce 100 to 

150 trajectory files which were used to calculate the binding free energy, Normal mode 

calculation was used to calculate the entropy contribution. 

Parameters used for MD calculations:  
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A series of minimizations ( maxcyc1000 ncycl 500 then 2500 ncycl 500 cycles of steepest 

descent at a time until RMSD is stable at a value less than 2 Å fluctuating around 1.4 Å) were 

performed to relax the system prior to MD simulations a 20000 step in total Particle Mesh Ewald 

calculation was used for calculating the long range electrostatic interactions. Shake was used to 

restrain bonds involving hydrogen atoms. The Time step for the MD simulations was 1.5 fs to 2 

fs depending on the sensitivity of the system. Equilibration of the system employing MD 

followed these steps: first gradual heating from 0 to 300K in 50 ps (Langevin dynamics used for 

temperature control) followed by 50ps of density equilibration with weak restraints followed by 

500ps of constant pressure equilibration at 300K. The production simulation was carried out 

under the same conditions as the final phase of equilibration for a total of 2ns with recording 

every 8 ps to obtain snapshots. Before using MM-GBSA the system equilibration was verified by 

considering temperature, density, total energy and root mean squared deviation of coordinates 

(RMSD). An RMSD value relative to the crystal structure of 1.5Å was deemed acceptable. The 

resulting trajectories were analyzed using the MM-GBSA modules in AMBER9.0.  

Calculation of the Free Energy of Zinc finger interaction with DNA bases: 

The Generalized Born model solvent area method in MM_GBSA in AMBER9.0 was employed 

for the calculations:  

∆G binding(Solvated) =∆G binding(vac)+∆GSolvation(complex)-(∆Gsolvation(Lig)+∆Gsolvation(receptor) ) 

∆G solvation=G electrostatic(ε=80) –G electrostatic(ε=1) +∆G hydrophobic , 

The free energy of binding contains three major contributions: Van der Waals, electrostatic and 

solvation energies. The solvation energy contribution was calculated using both the polar 
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contribution to solvation (GB) and the nonpolar contribution to solvation which was calculated 

based on accessible surface area (SA)(Qiu et al., 1997) .  

Normal mode calculation was used to calculate entropy contributions, T∆S, from the same 

snapshots as were used for calculating ∆G binding. Then the absolute free energy of binding was 

calculated from 

∆G = ∆G binding - T∆S 

Results and Discussion  

The recognition pattern of the zinc finger to DNA is shown in Figure 1, residues -1, 2, 3 

and 6 are known to play the major role in the binding process. The aim of our calculations is to 

establish which part of the protein sequence is the possible recognition domain and which 

residue(s) play the crucial role in recognition and binding based on energy considerations. Non 

canonical interactions, which hamper the idea of simple recognition, have also to be considered. 

In general, amino acid residue A1 on a protein interacts with its specific base B1 on the DNA and 

with other neighboring bases B2 and B3. On the other hand, base B1 from DNA may interact 

with more than one amino acid residue on the protein (A1 and A2) at the same time (C O Pabo & 

Sauer, 1984; Roy et al., 2012). 

key positions in the zinc finger protein Figure 1 (namely -1, 3 and 6 in addition to 

Aspartate in position 2) which are known to bind specifically to DNA bases in each finger (C O 

Pabo & Sauer, 1984; Carl O Pabo et al., 2001; Pavletich & Pabo, 1991; Roy et al., 2012; D J 

Segal et al., 1999) were mutated in order to test the extent of modularity, specificity and any 

possible cooperativity.  Aspartate in Position 2 (D2) was reported to take part in binding to the 

bases C or A on the 5’ strand opposite to a G base on the 3’ strand, it also interacts with R-1 (see 
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Figure 1 and Figure 5b). Mutants of residues 2 and 6 which are reported to play a role in binding 

either separately or jointly (Carl O Pabo et al., 2001; Roy et al., 2012) were studied. The role of 

other residues i.e. S-2, S1 were also studied and the energy of binding was calculated in all cases. 

1) Initial study of the binding of the zinc fingers to DNA 

The free energy of binding of each of the zinc fingers from the x-ray structure, now termed F1, 

F2 and F3 were calculated (Table I).  The total free energy (GBTOT) was -50(∓ 5) Kcal/mol for 

each finger, with varying contributions, the Van der Waal interactions were in the same range for 

all three fingers (- 35∓5 Kcal/mol). While the electrostatic interactions were maximum for F3 

and lowest for F1, the free energy ∆G is the least negative for F2 namely – 3.5 Kcal/mol. ∆G was 

more negative for fingers one and three indicating stronger binding, the entropy factor did not 

show a considerable change within a margin of error for all three fingers. Thus, we can safely 

say that absolute free energies (∆G) vary in the order F1 ≥ F3 >F2 with ∆H as the possible major 

contributor to the free energy, this may be an indication that F1 and F3 act as a hook to establish 

the binding of the protein to DNA.  

 Mutations of the DNA bases specifically bound to the Zinc fingers (each finger studied 

individually): 

Figures 2a, 2b and 2c and inserts 2a and 2b show the results of an experiment where 

DNA bases were mutated leaving the protein sequence intact in its wild type form. Fingers one 

(F1), two (F2) and three (F3) showed reduced binding upon mutation of the DNA bases. The loss 

in binding energy upon mutating DNA bases confirms the natural selection of the binding sites 

as evident in the reduction of binding energy upon mutating the wild type bases(see insert to 

Figure 2a). The triplet GCG originally known to bind finger one (F1) (with the sequence 
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SRSELTR) was mutated as shown in Figure 2a. The naturally occurring base triplet TGG which 

is specific to F2 has the highest negative free energy compared to other base triplets. Mutation in 

the DNA triplet TGG specific for binding finger two (F2) (SRSDHLTT) in the wild type zinc 

finger protein is shown in Figure 2b. These mutations in the DNA bases resulted in lower free 

energy of binding. Changes in total binding energy, in this case, are paralleled by changes in 

both electrostatic and VdW energies. The weakest binding is observed for ATA for F2. The 

general trend is a loss in binding strength upon mutation of the wild type triplet TGG specific for 

finger two(F2). This loss in binding can be attributed mainly to loss in electrostatic energy upon 

mutation of bases.  An increase in electrostatic energy values upon mutation of DNA bases in all 

three fingers was noted. It was more pronounced for F2 than for F1 and F3. Although 

electrostatic energy values increase considerably for F3, the values stay negative upon mutations. 

This is expected for the F3 sequence due to it possessing an R residue at position 4 and a K 

residue at position 5. These both being polar basic residues, hence both are responsible for high 

electrostatic attraction. This observation, in addition to showing the effect of mutating the bases 

on reducing the free energy of binding, gives evidence of behavioral differences between F1, F2 

and F3. Thereby, supporting the individual role each finger plays in the DNA binding process, in 

agreement with (Eustermann et al., 2011) and (Roy et al., 2012) in which the authors highlight 

the different roles and importance of each finger.  The total loss in free energy in all three fingers 

is about 30 Kcal/mol relative to the wild type binding energy. This loss varies according to the 

type of DNA base triplet combination (see inserts to Figure 2a and 2b). Table (II) columns 1, 2 

and 3 give the correlations between individual energies contributing to the total free energy, it is 

clear in all fingers studied that the highest contribution is from electrostatic forces (H-bonds, 

water mediated H-bonds will be published later). 
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Investigation of the binding of experimentally studied Zinc finger motifs to various DNA 

base combinations: 

When each sequence is bound to its designated specific triplet as derived experimentally 

by random selection studied by Segal in (D J Segal et al., 1999), the free energy of binding is 

more negative than when that same sequence is bound to the wild type triplet (TGG), for 

example the sequence SQ-1SGD3LRR6 binds GCA 1.6 times stronger than binding TGG (see 

Figure 5A and Tables II and III ). This finding stands as a confirmation of the selectivity of 

sequences derived experimentally by Segal and co-workers. A good correlation is observed for 

F2 variants prepared by Segal when the individual energies (electrostatic, VDW, solvation) are 

correlated to the total free energy (GBTOT) as can be seen in Table (II) column 4. This 

observation confirms the naturally selected sequences bound to their triplets as prepared in (D J 

Segal et al., 1999). 

 

 Mutation of zinc finger protein amino acid sequence bound to wild type naturally 

occurring 11 base pairs 

 In order to study the effect of amino acid residue mutations on the free energy of binding, finger 

two was singled out due to its reported importance in the binding process. Each amino acid 

residue in finger two was mutated (finger two (F2) amino acid sequence from zif268 (pdb code 

1aay) bound to its wild type 11bp (AGCGGGTGCGT) see Figure 1.  The free energy of binding 

to the TGG region was calculated and the results are shown in Figure 3A and 3B.  Figure 3 

shows a great sensitivity of the binding free energy to the mutations of the residues in positions -
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1, 2, 3 and 6. It is evident from the mutations that the largest loss in binding energy took place 

upon mutation of the key residues responsible for specific binding (R-1, H3, T6) see Figure 1 and 

4. In this case, any loss in binding is attributed to the loss in net electrostatic energy. As shown in 

Figure 3b electrostatic energy changed noticeably (Correlation coefficient R= 0.99) and VdW 

energy (R=0.93) while desolvation energies did not show much change within the error margin 

upon mutation (R=0.21) (see Figure 3c and Table IV). The electrostatic part of the desolvation 

energy showed a good correlation unlike the hydrophobic part of the solvation energy (R=0.94).  

This is indicative of an electrostatic nature of the hydrated pocket involved in the process of 

binding. 

The mutation of D2 which is responsible for cooperative binding and also binding the 

opposite strand showed a significant loss in binding energy, implicating the importance of this 

residue for Zinc finger binding to DNA. The importance of the key residues responsible for DNA 

base binding in the zinc finger  can be arranged according to the amount of lost binding energy 

upon mutating the residue, and they can be arranged  as follows: D2>R-1>H3 (T6 was not reported 

to have such a strong binding with T of the DNA).  

These mutations of the amino acid residues in the finger 2 sequence and the binding of 

the mutants to the WT 11bp of the  DNA bound to ZF (AGCGTGGGCGG) revealed important 

information about the role of key residues -1,2,3,5 and 6, with special emphasis on  residues-

1,2,3 and 6. The total free energy of binding of finger 2 was -50.5±5 Kcal/mol. When residue E 

replaced residue D in position two, a noticeable loss in binding was observed. When Histidine in 

position 3 (known to bind the middle G in the TGG triplet) was mutated to K, the binding energy 

dropped by 8.0 (∓	4.4) Kcal/mol. The loss in binding energy was 18.0 ±	4.5 Kcal/mol when R 
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in position -1 (which is known to bind G on the 3’ side of TGG) was mutated to K. These results 

show the importance of R-1, H3 and D2 in the DNA binding process. 

It should be noted that some mutations, specifically the T5 to L and T6 to R mutants, showed 

enhanced binding (Figure 3A). This can be explained by the increased number of electrostatic 

interactions represented by hydrogen bonds to the phosphate backbone, which can be classified 

as nonspecific binding, thereby confirming the indirect effect of mutating an amino acid residue 

on directing side chains in the helix in order to make more nonspecific contacts. The increase in 

nonspecific binding is due to turning the helix into a different position upon mutation. No 

considerable change in entropy was recorded as indicated by the small change in TS upon 

mutation (Figure 3B). Indeed a mutagenesis study has shown (Chang et al., 2008) that a Leucine 

analogue exhibited an enhanced thermodynamic stability due to its side chain (a process 

dominated by solvent reorganization). This extra stability helps in exposing the polar surface of 

the helix to bind stronger to DNA bases. The L residue is known to enhance the α helical 

structure and consequently the electrostatic interactions (Tsui et al., 2000). 

The hydrophobic contribution to solvation remained the same upon mutation of the F2 sequence. 

The drastic change occurred in the electrostatic interactions which changed the total free energy 

of binding. The free energy of binding upon mutation of residues in finger two has a high 

correlation with electrostatic interaction energy with an r value close to 1.0 indicating a large 

contribution from electrostatic energy. 

 Importance of R-1 
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Upon mutation of Arginine (R-1) to other amino acid residues (Figure 4), namely lysine and 

Histidine (K and H), which have a resemblance to R (all three are polar basic amino acids and 

carry a positively charged Nitrogen) a loss in binding energy took place (up to 20Kcal/mol). The 

same behavior was observed upon mutating R to Q (a polar uncharged residue). The loss in 

binding became greater upon mutating R to the acidic residues Glutamine and Aspartic acid (E 

and D). It was reported that charged side chains and solvent to helix potential and field backbone 

contributions always come from the first two helical turns (Tsui et al., 2000). These results are in 

agreement of the extra binding of the N-terminal side of the helix, i.e S-2 R-1S1 H3 and D2 fall in 

the range of these two turns. The binding distances of R-1 and H3 in F1 and F2 are demonstrated 

in the figures 5b and 5c. 

 

 Comparison of mutants of zinc finger domain sequences binding to other triplet base 

pairs  

 Finger two variants (J. Liu & Stormo, 2008; D J Segal et al., 1999) bound to 11 base pairs with 

the finger two target site mutated as shown in Figure4 were used to study the predictive power of 

the MD simulation in analyzing the binding of various amino acid sequences to specific base pair 

combinations. It can be seen that the stability of ZF-DNA complex, as indicated by the negative 

free energy,  supports, in most of the cases,  the experimentally obtained specificity of residues 

to their specific bases as obtained by Kd values from electrophoresis Gel shift assays (D J Segal 

et al., 1999) (Figure 5a) , for correlation between MD obtained values and experimental free 

energy values see Table III. The most noticeable free energy values are the specificity of residue 
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R to the base G, residue Q to A and D to C, for example R-1K3R6 showed enhanced stability for 

GGG over most ZF’s which contain R in position 6 (see supplementary material). The amino 

acid combination also played a role in the stability, as can be seen in its extra stability over R-

1H3R6. The type of base combination also played a role in stability, for example RKR/GGG is 

more stable than RKR/GTG while in both cases R-1 and R6 are bound to G. The type of 

combination of residues also affected the free energy of binding, for example R-K-R showed 

stronger binding than R-H-R to GGG, although H was reported to be specific to G by Segel and 

co-workers (see supplementary Figures A and B). Position of the amino acid residue in the 

sequence has an effect on its strength of binding to its specific base, i.e whether the residue is in 

position -1, 3 or 6. For example Q-D-R binds specifically to GCA stronger than when D is in 

position -1 as the cases of D-H-R to GGC or DNR to GACshow. These findings show the 

importance of the positions of residues (-1, 3 or 6) in affecting the extent of binding. 

The same argument holds true for other combinations, if we compare for example 

QDR/GCA, QNR/GAA, QSR/GTA, QSR/GTG and QDR/GCT. The outcome of this comparison 

is that Q-1 is specific to A, but Q results in more stable binding when present with D in position 3 

than when present with T or S in position 3. These interactions affect the specificity of binding 

and support the hypothesis of cooperative binding. They also support the effect of interaction of 

residues with each other in the finger sequence (C O Pabo & Nekludova, 2000). 

Breaking the total free energy of binding to its individual energies (Electrostatic, Van der 

Waals and surface area) shows which energy drives the binding process  and which is most 

affected by mutation. It is obvious from the variation in VdW energy that it parallels the 

variation in total free energy. This makes it one of the major contributing energies to the free 

energy with the rest of the contribution from the electrostatic energy (loss in binding energy is 
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mainly due to loss in electrostatic energy in all cases, see correlation diagrams). This 

contribution also depends on the type of residues and bases involved in binding; the electrostatic 

contribution from the point of view of base combination is maximum for GGG then GGA then 

GCA and GAA, so the order is GGG>GGA≥GCA=GAA.  

Considering the amino acid combinations’ effect on electrostatic energy, they can be arranged 

according to their electrostatic contribution: RK has the maximum contribution followed by QD, 

QH and QN. This can be verified further upon mutating the DNA bases. 

This outcome demonstrates how complicated the recognition process can be (C O Pabo & 

Nekludova, 2000), and it also shows that co-operativity is a factor which cannot be ignored in the 

recognition process. A final outcome is that R and H are most specific to G, D and E are specific 

to C, T, S and E are specific to T and Q and N are specific to A. 

The experimentally observed specificity of residues in positions -1,3 and 6 based on equilibrium 

binding studies showed that R and H were specific to G; Q and N and E bind specifically to A 

with Q the strongest binder; D and E bind C with D a stronger binder to C; T, S and E bind T.  In 

order to study the effect of positions -2,1,2 and 5, finger two with the sequence SRSDHLTT was 

singled out for study, although experimental reports were mostly on –LVR in positions 5 and 6 

instead of LTT (J. Liu & Stormo, 2008; Miller & Pabo, 2001; D J Segal et al., 1999). Our 

predicted values for a single finger 2 were ( -50.0±4.5 Kcal/mol) and the absolute free energy 

was –3.5±11 Kcal/mol after considering the entropy T∆S. The details of calculated binding 

energies of several amino acid sequences and the experimentally calculates energies are shown 

in the supplementary figures. 

Conclusion: 
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F1 and F3 have higher negative hydrophobic energy than F2 (Table II). Desolvation of F3 is 

highest (expected because of the type of residues involved; ARSDERKR compared to both F1 

and F2 which contain LT in positions 4 and 5 instead of the KR in F3). The solvation energy 

contribution is greatest for finger 3 then 2 then 1. The hydrophobic contribution to solvation is in 

the same range for all three fingers indicating that the solvation energy difference arises from 

polar contribution, this goes well with the more polar surface of finger three (see Table II). 

Correlation for F1 and F2 (Table IV) is in the order Electrostatic>hydrophobic> Vdw while for 

F3 the correlation between total energy and hydrophobic energy is better than with electrostatic 

energy. 

Total negative free energies GBTOT vary in the order: F3	≥	F1> F2 (Table I). ∆G value is -3.5 

Kcal/mol for all three fingers.  Entropy contribution is close for all three fingers. Therefore, each 

finger has the same affinity to its specific base triplet and the process is mainly enthalpy driven. 

Van der Waal forces recorded similar values for all fingers, within the error margin (-

35Kcal/mol). Electrostatic contribution is close for F1 and F2, but is slightly higher for F3. 

Molecular dynamics simulations and MM/GBSA prove that the free energy of binding 

can be reasonably estimated for zinc finger proteins binding to  DNA with correlation 

coefficients comparable to those reported  in (J. Liu & Stormo, 2008) which employed context-

dependent model for zinc finger-DNA interactions and compared it with other theoretically and 

experimentally obtained techniques , it was shown that the estimated free energy of binding gave 

acceptable correlation with values calculated experimentally from equilibrium studies (J. Liu & 

Stormo, 2008; D J Segal et al., 1999; Temiz & Camacho, 2009; Temiz et al., 2010). It was 

evident in all studies performed in this work that the driving force for binding of amino acid 
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residues to DNA bases is electrostatic in nature, i.e. between amino acid side chains, DNA base 

side chains and the backbone phosphate (Roy et al., 2012; Temiz et al., 2010). These electrostatic 

attractions are expressed as hydrogen bonding between key residues on the N-terminus of the 

helix and the bases starting at the 3’ end of the strand (Figure 5B and 5C). Non specific binding 

is part of the process which in some previous studies on DNA binding proteins was thought of as 

a transition state in the specific binding process.  

Our studies showed that Arginine and Histidine are specific to G, while glutamine is 

specific to A and Aspartate is specific to C (see R—G and H—G distances in figures 5B and 

5C). These findings are in agreement with experimental work by Segal (D J Segal et al., 1999). It 

was evident that position -1 in the helix plays a major role in recognition of the helix to its 

specific base triplet and in most cases Arginine recognized G and glutamine (Q) recognized A. In 

addition to that Aspartate in position 2 proved to be very important to the recognition and 

binding process as it forms four hydrogen bonds with R-1 and binds C or A on the opposite strand 

on the 5’ side. This is in agreement with previous reports (Carl O Pabo et al., 2001; Temiz & 

Camacho, 2009; Temiz et al., 2010).  

In all studies performed, mutations of the wild type zinc finger amino acid sequences 

resulted in lower energy of binding to the wild type eleven base pair DNA as can be seen in 

Figures 3 and 4. On the other hand, mutations of the specific DNA triplets (WT) resulted in 

lower binding energy of the zinc finger (Temiz & Camacho, 2009). 

To optimize the selectivity, both the zinc finger helix and DNA triplets were mutated 

together, this resulted in maximum negative free energy of binding for the experimentally 

selected helices when compared to the binding energy of these helices to the original wild type 
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triplet (TGG). It was  evident in the study that finger 1 and 3 have a stronger binding than finger 

2, which agrees with the proposed mechanisms that finger 1 plays the major role in recognition 

(Eustermann et al., 2011). It has been reported that due to the co-operatively of binding 

observed, it is difficult to design sequences with high specificity (Carlson et al., 2010). However, 

in the future, MM-GBSA and MD can help in designing new site-specific zinc finger proteins 

with optimum binding capacity to specific DNA bases by estimating the binding energy of a 

given sequence to a certain base pair combination. Indeed studies on ZF binding to DNA have 

already proved important in therapeutic studies in humans (Eustermann et al., 2011). 

References 

Blancafort, P., Segal, D. J., & Barbas, C. F. (2004). Designing transcription factor architectures for drug discovery. 
Molecular Pharmacology, 66(6), 1361–71. doi:10.1124/mol.104.002758 

Brayer, K. J., Kulshreshtha, S., & Segal, D. J. (2008). The protein-binding potential of C2H2 zinc finger domains. 
Cell Biochemistry and Biophysics, 51(1), 9–19. doi:10.1007/s12013-008-9007-6 

Carlson, C. D., Warren, C. L., Hauschild, K. E., Ozers, M. S., Qadir, N., Bhimsaria, D., … Ansari, A. Z. (2010). 
Specificity landscapes of DNA binding molecules elucidate biological function. Proceedings of the National 
Academy of Sciences of the United States of America, 107(10), 4544–4549. doi:10.1073/pnas.0914023107 

Chang, C.-E. a, McLaughlin, W. a, Baron, R., Wang, W., & McCammon, J. A. (2008). Entropic contributions and 
the influence of the hydrophobic environment in promiscuous protein-protein association. Proceedings of the 
National Academy of Sciences of the United States of America, 105(21), 7456–61. 
doi:10.1073/pnas.0800452105 

Cheng, X., Boyer, J. L., & Juliano, R. L. (1997). Selection of peptides that functionally replace a zinc finger in the 
Sp1 transcription factor by using a yeast combinatorial library. Proceedings of the National Academy of 
Sciences of the United States of America, 94(25), 14120–5. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=28443&tool=pmcentrez&rendertype=abstract 

D. A. Case, D. A. Pearlman, J.W. Caldwell, T.E. Cheatham III, J. Wang, W. S. R., C.L. Simmerling, T.A. Darden, 
K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vencent, M., Crawley, V. Tsui, H. Gohlke, R.J. Radmer, Y. Duan, 
J. Pietera, I. Massova, G. L. S., & U. C. Singh, P.K. Weiner, P. A. K. (2006). Amber 9. 

D.A. Pearlman, D.A. Case, J.W. Caldwell, W.R. Ross, T.E. Chealtham, S., & DeBolt, I.I.I. D. Ferguson, G. Seibel, 
P. K. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode 
analysis, molecular dynamics and free energy calculation to simulate the structural and energetic properties of 
molecules. Computer Physics Communication. 

DeLano, W. L. (2002). The PyMOL Molecular Graphics System. Retrieved from http://www.pymol.org 

D
ow

nl
oa

de
d 

by
 [

46
.2

44
.8

9.
68

] 
at

 0
3:

01
 0

3 
Ja

nu
ar

y 
20

16
 



21 
 

Desjarlais, & Berg, J. M. (1992). Redesigning the DNA-binding specificity of a zinc finger protein: a data base-
guided approach. Proteins, 13(3), 272. doi:10.1002/prot.340130309 

Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., & Barbas, C. F. (2001). Development of zinc finger domains for 
recognition of the 5’-ANN-3' family of DNA sequences and their use in the construction of artificial 
transcription factors. The Journal of Biological Chemistry, 276(31), 29466–78. doi:10.1074/jbc.M102604200 

Dreier, B., Segal, D. J., & Barbas, C. F. (2000). Insights into the molecular recognition of the 5’-GNN-3' family of 
DNA sequences by zinc finger domains. Journal of Molecular Biology, 303(4), 489–502. 
doi:10.1006/jmbi.2000.4133 

Elrod-Erickson, M., Benson, T. E., & Pabo, C. O. (1998). High-resolution structures of variant Zif268-DNA 
complexes: implications for understanding zinc finger-DNA recognition. Structure (London, England : 1993), 
6(4), 451–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9562555 

Eustermann, S., Videler, H., Yang, J. C., Cole, P. T., Gruszka, D., Veprintsev, D., & Neuhaus, D. (2011). The DNA-
binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second 
zinc finger. Journal of Molecular Biology, 407(1), 149–170. doi:10.1016/j.jmb.2011.01.034 

Fogolari, F., Brigo, A., & Molinari, H. (2003). Protocol for MM/PBSA molecular dynamics simulations of proteins. 
Biophysical Journal, 85(1), 159–66. doi:10.1016/S0006-3495(03)74462-2 

Fu, F., Sander, J. D., Maeder, M., Thibodeau-Beganny, S., Joung, J. K., Dobbs, D., … Voytas, D. F. (2009). Zinc 
Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger 
arrays. Nucleic Acids Research, 37(Database issue), D279–83. doi:10.1093/nar/gkn606 

Greisman, H. a. (1997). A General Strategy for Selecting High-Affinity Zinc Finger Proteins for Diverse DNA 
Target Sites. Science, 275(5300), 657–661. doi:10.1126/science.275.5300.657 

Gromiha, M. M., Siebers, J. G., Selvaraj, S., Kono, H., & Sarai, A. (2005). Role of inter and intramolecular 
interactions in protein-DNA recognition. Gene, 364, 108–13. doi:10.1016/j.gene.2005.07.022 

Hou, T., Chen, K., McLaughlin, W. a, Lu, B., & Wang, W. (2006). Computational analysis and prediction of the 
binding motif and protein interacting partners of the Abl SH3 domain. PLoS Computational Biology, 2(1), 
0046–0055. doi:10.1371/journal.pcbi.0020001 

Jamieson, A. C., Miller, J. C., & Pabo, C. O. (2003). Drug discovery with engineered zinc-finger proteins. Nature 
Reviews. Drug Discovery, 2(5), 361–8. doi:10.1038/nrd1087 

Kang, J. S., & Kim, J. S. (2000). Zinc finger proteins as designer transcription factors. The Journal of Biological 
Chemistry, 275(12), 8742–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10722717 

Kollman, P. a, Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., … Cheatham, T. E. (2000). Calculating 
structures and free energies of complex molecules: combining molecular mechanics and continuum models. 
Accounts of Chemical Research, 33(12), 889–97. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11123888 

Ligands, M. B., Nguyen-hackley, D. H., Ramm, E., Taylor, C. M., Joung, J. K., Dervan, P. B., & Pabo, C. O. 
(2004). Allosteric Inhibition of Zinc-Finger Binding in the Major Groove of DNA by, 3880–3890. 

Liu, J., & Stormo, G. D. (2008). Context-dependent DNA recognition code for C2H2 zinc-finger transcription 
factors. Bioinformatics (Oxford, England), 24(17), 1850–7. doi:10.1093/bioinformatics/btn331 

D
ow

nl
oa

de
d 

by
 [

46
.2

44
.8

9.
68

] 
at

 0
3:

01
 0

3 
Ja

nu
ar

y 
20

16
 



22 
 

Liu, Q., Xia, Z., Zhong, X., & Case, C. C. (2002). Validated zinc finger protein designs for all 16 GNN DNA triplet 
targets. The Journal of Biological Chemistry, 277(6), 3850–6. doi:10.1074/jbc.M110669200 

Miller, J. C., & Pabo, C. O. (2001). Rearrangement of side-chains in a Zif268 mutant highlights the complexities of 
zinc finger-DNA recognition. Journal of Molecular Biology, 313(2), 309–15. doi:10.1006/jmbi.2001.4975 

Morozov, A. V, Havranek, J. J., Baker, D., & Siggia, E. D. (2005). Protein-DNA binding specificity predictions with 
structural models. Nucleic Acids Research, 33(18), 5781–98. doi:10.1093/nar/gki875 

Naïm, M., Bhat, S., Rankin, K. N., Dennis, S., Chowdhury, S. F., Siddiqi, I., … Purisima, E. O. (2007). Solvated 
interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. 
Journal of Chemical Information and Modeling, 47(1), 122–33. doi:10.1021/ci600406v 

Nakata, E., Liew, F. F., Uwatoko, C., Kiyonaka, S., Mori, Y., Katsuda, Y., … Morii, T. (2012). Zinc-Finger Proteins 
for Site-Specific Protein Positioning on DNA-Origami Structures. Angewandte Chemie, 51(10), 2421–2424. 

Pabo, C. O., & Nekludova, L. (2000). Geometric analysis and comparison of protein-DNA interfaces: why is there 
no simple code for recognition? Journal of Molecular Biology, 301(3), 597–624. doi:10.1006/jmbi.2000.3918 

Pabo, C. O., Peisach, E., & Grant, R. A. (2001). D ESIGN AND S ELECTION OF N OVEL C YS2 H IS2 Z INC F 
INGER P ROTEINS. Annual Review of Biochemistry. 

Pabo, C. O., & Sauer, R. T. (1984). Protein-DNA recognition. Annual Review of Biochemistry, 53, 293–321. 
doi:10.1146/annurev.bi.53.070184.001453 

Paillard, G., & Lavery, R. (2004). Analyzing Protein-DNA Recognition Mechanisms. Structure, 12(1), 113–122. 
doi:10.1016/j.str.2003.11.022 

Pavletich, N. P., & Pabo, C. O. (1991). Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 
2.1 A. Science, 252(5007), 809–817. 

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, F. TE. (2004). a visualization system 
for exploratory research and analysis. J Comput Chem, 25(13), 1605–1612. 

Qiu, D., Shenkin, P. S., Hollinger, F. P., & Still, W. C. (1997). The GB/SA Continuum Model for Solvation. A Fast 
Analytical Method for the Calculation of Approximate Born Radii, 5639(96), 3005–3014. 

Rizzo, R. C., Aynechi, T., Case, D. A., & Kuntz, I. D. (2006). Estimation of Absolute Free Energies of Hydration 
Using Continuum Methods : Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions, 
128–139. 

Rohs, R., West, S. M., Liu, P., & Honig, B. (2009). Nuance in the double-helix and its role in protein-DNA 
recognition. Current Opinion in Structural Biology, 19(2), 171–7. doi:10.1016/j.sbi.2009.03.002 

Roy, S., Dutta, S., Khanna, K., Singla, S., & Sundar, D. (2012). Prediction of DNA-binding specificity in zinc finger 
proteins. Journal of Biosciences, 37(3), 483–491. doi:10.1007/s12038-012-9213-7 

Segal, D. J., Crotty, J. W., Bhakta, M. S., Barbas, C. F., & Horton, N. C. (2006). Structure of Aart, a designed six-
finger zinc finger peptide, bound to DNA. Journal of Molecular Biology, 363(2), 405–21. 
doi:10.1016/j.jmb.2006.08.016 

D
ow

nl
oa

de
d 

by
 [

46
.2

44
.8

9.
68

] 
at

 0
3:

01
 0

3 
Ja

nu
ar

y 
20

16
 



23 
 

Segal, D. J., Dreier, B., Beerli, R. R., & Barbas, C. F. (1999). Toward controlling gene expression at will: selection 
and design of zinc finger domains recognizing each of the 5’-GNN-3' DNA target sequences. Proceedings of 
the National Academy of Sciences of the United States of America, 96(6), 2758–63. Retrieved from 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=15842&tool=pmcentrez&rendertype=abstract 

Temiz, N. A., & Camacho, C. J. (2009). Experimentally based contact energies decode interactions responsible for 
protein-DNA affinity and the role of molecular waters at the binding interface. Nucleic Acids Research, 
37(12), 4076–4088. doi:10.1093/nar/gkp289 

Temiz, N. A., Trapp, A., Prokopyev, O. A., & Camacho, C. J. (2010). Optimization of minimum set of protein--
DNA interactions: a quasi exact solution with minimum over-fitting. Bioinformatics, 26(3), 319–325. 

Tsui, V., Radhakrishnan, I., Wright, P. E., & Case, D. a. (2000). NMR and molecular dynamics studies of the 
hydration of a zinc finger-DNA complex. Journal of Molecular Biology, 302(5), 1101–17. 
doi:10.1006/jmbi.2000.4108 

Uil, T. G. (2003). Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence 
specificities. Nucleic Acids Research, 31(21), 6064–6078. doi:10.1093/nar/gkg815 

Wang, J., Morin, P., Wang, W., & Kollman, P. a. (2001). Use of MM-PBSA in reproducing the binding free 
energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by 
docking and MM-PBSA. Journal of the American Chemical Society, 123(22), 3986–3994. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/11457384 

Wang, W., Lim, W. a, Jakalian, a, Wang, J., Luo, R., Bayly, C. I., & Kollman, P. a. (2001). An analysis of the 
interactions between the Sem-5 SH3 domain and its ligands using molecular dynamics, free energy 
calculations, and sequence analysis. Journal of the American Chemical Society, 123(17), 3986–94. Retrieved 
from http://www.ncbi.nlm.nih.gov/pubmed/11457149 

Wolfe, S. a, Grant, R. a, Elrod-Erickson, M., & Pabo, C. O. (2001). Beyond the “recognition code”: structures of 
two Cys2His2 zinc finger/TATA box complexes. Structure (London, England : 1993), 9(8), 717–23. Retrieved 
from http://www.ncbi.nlm.nih.gov/pubmed/11587646 

Wolfe, S. a, Ramm, E. I., & Pabo, C. O. (2000). Combining structure-based design with phage display to create new 
Cys(2)His(2) zinc finger dimers. Structure (London, England : 1993), 8(7), 739–50. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/10903945 

Wu, H., Yang, W. P., & Barbas, C. F. (1995). Building zinc fingers by selection: toward a therapeutic application. 
Proceedings of the National Academy of Sciences of the United States of America, 92(2), 344–348. 
doi:10.1073/pnas.92.2.344 

 

  

D
ow

nl
oa

de
d 

by
 [

46
.2

44
.8

9.
68

] 
at

 0
3:

01
 0

3 
Ja

nu
ar

y 
20

16
 



24 
 

                                                                                                    

                 

                    H 

 

                C 

      

6 

   β                                                      3 

                                                         2 

                                                                 -1 

 

                                -1   2 3   6 
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Figure 1 

Cys2His2 zinc finger motif and the sequence. Ribbon diagram (top) of finger 3 from the average 

structure:  showing the two cysteine and two Histidine residues binding the zinc atom. Key 

F1 (α) F2 (α) F3 (α) 
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positions R-1, D2, E3 and R6 which bind the G C G on the major groove of the DNA. The amino 

acid sequence of zif268 with key positions which bind DNA bases are shown in boldface 

(bottom) 
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Figure 2(a): 

 The change in total energy (GBTOT) upon mutation of DNA bases specific for F1.Electrostatic 

contribution (GBELE) and Van der Waals contribution(VDW) to the total free energy (GBTOT) 

upon mutation of the specific bases (GCG)  for finger one (F1) with the sequence SRSDELTR.  

Energy changes upon mutation of the DNA triplet (GCG) specific for finger one (F1) are labeled 

red.  Total electrostatic energy GBELE is labeled Blue triangles. Van der Waals energy, Brick 

red (squares) total energy (GBTOT), green diamond. 
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Figure2(b): 

  Loss in binding energy upon mutation of the specific base triplet (TGG) for finger two (F2) 

with the sequence SRSDHLTT. GBTOT represented as green triangles and green line, GBELE 

(Brick red squares and brick red line, VDW energy is labeled blue diamonds and blue line. The 

wild type naturally occurring triplet TGG is labeled red in all energies. 
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Figure2(c): 

  Loss in binding upon base mutation of the specific sequence (GCG) for F3. GBTOT is 

represented as green diamonds with green line, GBELE is represented as blue squares with blue 

line, VDW energy Brick red triangles and brick red line. 

The label (red diamond) represent the wild type GCG triplet. The loss in binding energy 

(GBTOT) upon mutation of GCG is originated mainly in the loss in electrostatic forces 

(GBELE). For F3 energies are more negative than F1 and F2. 
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. Figure3A:   

Plot of drop in energies of binding of finger two (F2) upon mutation of its amino acid sequence: 

studied with the wild type eleven base pairs specific for F2: 

 GBTOT (shown as green triangles and green line).  GBELE (blue diamond and blue line. VdW 

(brick red squares and brick red line).  GBSUR (purple( x) and purple line). The wild type finger 

is shown filled with red color.  

D2E means D in position 2 is replaced by E, T5L means T in position 5 is replaced by L, T6R 

means T in position 6 is replaced by R. Its noticeable that GBSUR does not change considerably 

upon mutation of amino acid sequence. 
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Figure3B:  Calculation of  ΔG from total energy and entropy factor 

Energies of binding of finger 2 (F2) and its mutants to the 11bp WT DNA sequence: Absolute 

free energies. No considerable change in entropy upon mutations was observed. GBTOT (blue). 

TS (purple). ΔG = GBTOT –TS shown in green. GBTOT indicated by blue squares and blue 

line, TS is indicated by purple diamonds and purple line, ΔG = GBTOT –TS is indicated by the 

green triangles and green line 
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Figure 3C:   

Correlation between total free energy of binding ( GBTOT) and electrostatic energy (GBELE) of 

amino acid residues upon mutation of finger two (F2) sequence (Bound to the wild type 11bp). 

Values are taken from figure 3A. The r value of 0.99 indicates a strong correlation between the 

binding energy and electrostatic energy [ see Table IV]. 
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Figure 4: Effect of mutating R-1 on binding energies 

The change in free energy of binding upon mutation of the Arginine residue (R-1).Total free 

energy (green line and green diamonds). Electrostatic energy (blue line and squares). Van der 

Waal energy change (brick red line and diamonds). 
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Figure 5A: Energies of binding certain designated sequences each to its specific triplet 

(blue) as compared to binding the same sequence to TGG triplet (brick red).Comparison 

between the free energy of binding for each sequence bound to TGG (shown in Brick red color 

line and squares) compared to the free energy of binding of that sequence to its specific DNA 

triplet found by experimental mutagenesis [11] (shown in blue Blue diamonds and blue line). 
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   Figure 5B: Measured distances of amino acid residues on ZF1 from corresponding G bases 

taken from the average structure of 200 snapshots: R16 = R-1, Arg22 = R6. Distances show the 

binding of R-1 to N on G2
 (1.95Å) and R6 to N on G1 (2.00 Å). 
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Figure 5C: ZF2 binding sites obtained from average structure: the figure shows the Histidine-G 

distances and Arginine-G distances in Angstroms 

 Binding of zinc finger F2 to DNA: R-1-- G1 (2.25 Å and 2.42Å) and H3---- G2 (2.05 Å )distances 

from their G respective binding sites (TG2G1) taken from average structure of  200 snapshots. 
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Table I:  Calculated energies for zinc fingers F1, F2, and F3: Total energy released 

(GBTOT) was calculated in a water box and using MM-GBSA, the net energy (∆G) 

was calculated by subtracting TS from nmode calculations from the GBTOT. The contributing 

forces (VDW and electrostatic)   to the total energy for each finger are shown.Electrostatic 

(GBELE) is greatest for F3. 

VDW STD GELE STD GBTOT STD TS STD ∆G STD 
F1 -39.13 4.15 -8.87 7.26 -55.22 5.98 -39.40 11.50 -15.82 12.96 
F2 -30.79 4.65 -13.86 6.32 -50.47 4.83 -47.02 10.70 -3.45 11.74 
F2* -27.11 4.68 -13.03 6.70 -45.42 4.73 -41.76 12.00 -3.66 12.79 
F3 -32.32 3.51 -17.55 6.82 -56.44 4.70 -44.30 10.61 -12.14 11.60 

• Energy for Finger 2 was calculated  in second experiment 
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Table II:  shows correlation (r values) of contributing forces (energies) to the total free energy of 

binding (GBTOT) upon mutation of DNA triplets. Column 5shows correlation for designed 

fingers bound to their designated DNA triplets (see Figure5A) as prepared experimentally by 

Segal et al [11]. The strong correlation between electrostatic forces (GBELE) and  total energy 

released (GBTOT) is evident in all cases, also the strong correlation in column 5 between total 

energy and all individual contributing energies confirms the natural selection process in 

reference 11. 

Correlation  
coefficient of 
individual energy  
with GBTOT 
(1) 

F1/DNA 
(2) 

F3/DNA(MUT)
(3) 

F2/DNA
(4) 

Mutations in F 2 
sequence 
(mutant sequences based 
on Segal et al  [11], each 
sequence bound to its 
specific base triplet) as 
in Figure 5A 
(5) 

ELE 0.78 0.69 0.3 0.89 
VdW 0.25 0.294 0.21 0.63 
GAS 0.78 0.71 0.295 0.88 

GBSUR 0.53 0.84 0.5 0.82 

GB 0.74 0.67 0.25 0.87 

GBSOL 0.74 0.67 0.25 0.87 

GBELE 0.78 0.61 0.85 0.872 
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Table III: Correlation Coefficients (r values) of individual energies to the absolute free energy 
∆G exp for mutant sequences of finger two F2 in Figure 5A.Experimental values of  ∆G were 
calculated using the experimentally obtained K values in reference 11 and applying the 
equation ∆G= -RTlnK. The low correlation because the experimental values reported error 
was ± 50% 

Type of Energy Abbreviation 

Correlation 

coefficient with 

∆G exp[11]* 

∆G predicted from MD 

See  reference [17] 
∆GMD 0.57 

Total free energy of binding GBTOT 0.483 

Gas phase Electrostatic energy From MM ELE 0.265 

Total gas phase energy MM GAS 0.265 

Van der Waal VDW 0.2 

Sum of electrostatic energies from solvation and MM 

energies 
GBELE 0.44 

Sum of polar and nonpolar contributions to solvation GBSOL 0.265 

Electrostatic contribution to solvation GB 0.265 

Hydrophobic contribution to solvation GBSUR 0.352 

T∆S TS 0.11 

• ΔG exp calculated from Kd values obtained experimentally by Segal et al [11] using 

ΔG=RTlnKd 
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Table IV:  Correlation coefficients (r) for different energy contributions to the total 

free energy of binding (GBTOT) of F2 mutant sequences bound to the specific 

naturally occurring 11bp DNA sequence (Figures 3a to 3c). 

Energy component Correlation coefficient (r) 

Electrostatic 0.99 

Van der Waal 0.93 

Desolvation (electrostatic contribution) 

GB 

0.46 

Total desolvation (polar+ nonpolar) 0.46 

 

The three major contributing forces in this case are electrostatic, VdW and 

hydrophobic forces. 
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Figure A supplementary material: calculated energies of different finger sequences bound to their 

specific DNA triplets as prepared by Segel [11]. Brick red is electrostatic energy, blue diamonds and line 

is VDW forces. Green triangles and line is the total energy (GBTOT).  

Every point is labeled by the most important amino acids in each sequence in Red bound to their specific 

DNA bases, for example the first point on the left R—H---R binds G—G—G and Q---D---R binds GCA, GAG 

and GCG with most negative energy for GCA, see conclusion part. 

  

GGG
RHR

GGG
RKR

GTG
RKR

GGA
QHR

GGT
THR

GGC
THR

GGC
DHRGAG

RNR
RNR
GGG

GAC
DNRGCC

DNR

GTG
RSR

GTC
DAR

GCC
DAR

GCC
DDR

GAA
QNR

GTA
QSR

GTG
QSR GTT

TSR

GCT
TER

GTG
RER

-RER
GAG

RDR
GCG

RDR
GAG

GCA
QDR

GCT
QDR

GAT
TNR

TGG
RHT

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20
SR

SD
HL

TR
SR

SD
KL

VR
SR

SD
KL

VR
SQ

RA
HL

ER
ST

SG
HL

VR
ST

SG
HL

VR
SD

PG
HL

VR
SR

SD
N

LV
R

SR
SD

N
LV

R
SD

PG
N

LV
R

SD
PG

N
LV

R
SR

KD
SL

VR
SD

PG
AL

VR
SD

PG
AL

VR
SD

CR
DL

AR
SQ

SS
N

LV
R

SQ
SS

SL
VR

SQ
SS

SL
VR

ST
SG

SL
VR

ST
SG

EL
VR

SR
SD

EL
VR

SR
SD

EL
VR

SR
SD

DL
VR

SR
SD

DL
VR

SQ
SG

DL
RR

SQ
SG

DL
RR

ST
SG

N
LV

R
SR

SD
HL

TT

Kc
al

/m
ol

VDW
ELE
GBTOT

D
ow

nl
oa

de
d 

by
 [

46
.2

44
.8

9.
68

] 
at

 0
3:

01
 0

3 
Ja

nu
ar

y 
20

16
 



41 
 

 

Figure B-supplementary: the energies GBTOT of synthesized sequences in Figure A supplementary were 

used to calculate ΔG from MD using TS and the equation ΔGMD= GBTOT- TS scattered as green triangles 

around experimentally obtained values from gel-shift assays by Segel [11] labeled as ΔGexp obtained 

from K values using  ΔG= -RTlnK for different amino acid sequence arrangements  

Red Bricks ΔGexp , green triangles ΔGMD , blue Diamond is GBTOT with added constant to fit the curve 
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