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Context: Glucagon-like peptide-1 (GLP-1) 7-36 amide, an insulinotropic hormone released from the
intestinal L cells in response to nutrient ingestion, has been extensively reviewed with respect to
�-cell function. However GLP-1 receptors are abundant in many other tissues. Thus, the function
of GLP-1 is not limited to the islet cells, and it has regulatory actions on many other organs.

Evidence Acquisition: A review of published, peer-reviewed medical literature (1987 to September
2008) on the extrapancreatic actions of GLP-1 was performed.

Evidence Synthesis: The extrapancreatic actions of GLP-1 include inhibition of gastric emptying
and gastric acid secretion, thereby fulfilling the definition of GLP-1 as an enterogastrone. Other
important extrapancreatic actions of GLP-1 include a regulatory role in hepatic glucose production,
the inhibition of pancreatic exocrine secretion, cardioprotective and cardiotropic effects, the reg-
ulation of appetite and satiety, and stimulation of afferent sensory nerves. The primary metabolite
of GLP-1, GLP-1 (9-36) amide, or GLP-1m, is the truncated product of degradation by dipeptidyl
peptidase-4. GLP-1m has insulinomimetic effects on hepatic glucose production and cardiac func-
tion. Exendin-4 present in the salivary gland of the reptile, Gila monster (Heloderma suspectum),
is a high-affinity agonist for the mammalian GLP-1 receptor. It is resistant to degradation by
dipeptidyl peptidase-4, and therefore has a prolonged half-life.

Conclusion: GLP-1 and its metabolite have important extrapancreatic effects particularly with
regard to the cardiovascular system and insulinomimetic effects with respect to glucose homeosta-
sis. These effects may be particularly important in the obese state. GLP-1, GLP-1m, and exendin-4
therefore have potential therapeutic roles because of their diffuse extrapancreatic actions. (J Clin
Endocrinol Metab 94: 1843–1852, 2009)

Glucagon-like peptide-1 (7-36) amide (GLP-1) is a 29-amino
acid hormone secreted from the L cells of the small intes-

tine by site-selective cleavage of the preproglucagon gene prod-
uct (1). After the delineation of the DNA sequence of prepro-
glucagon by Bell et al. (2) in hamster and man, the presence of
two related peptides, GLP-1 and glucagon-like peptide-2, was
proposed. Lopez et al. (3) isolated the same sequences in bovine
preproglucagon cDNA. Habener’s group then isolated the same
sequence in the rat (4) and showed that GLP-1 was a potent
insulinotropic agent (5) that qualified for the designation of an

incretin (6, 7). GLP-1 is a mammalian brain-gut axis hormone
that is alsoanendocrineparacrinehormone, anautonomicnervous
system neurotransmitter (1, 8), and a natriuretic hormone (9).

GLP-1 is rapidly degraded to GLP-1 (9-36) amide, also re-
ferred to as GLP-1m, by the action of dipeptidyl peptidase-4
(DPP-4) (10, 11), which results in a circulating half-life for GLP-1
of 2 min (12) and is also cleared from the circulation by renal
excretion (1). Peptides with alanine, proline, and hydroxyproline
found in the N-terminal domain are cleaved by DPP-4, and
GLP-1 is cleaved at the His 7, Aln 8 position leading to the
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formation of the GLP-1m (13). Exendin-4, a GLP-1 receptor
(GLP-1R) agonist, is present in the saliva of Gila monster (He-
loderma suspectum). It shares 53% of its amino acid sequence
with the N-terminal region of mammalian GLP-1 (14). Ex-
endin-4 has an extra nine amino acid residues at its C terminus.
A major difference between the two agents is that the second
amino acid of exendin-4 is glycine, which is resistant to DPP-4
cleavage. It has a circulating half-life of 30 min in man (15, 16).

GLP-1 and exendin-4 have been shown to be potently in-
sulinotropic in both normal and diabetic subjects, and their
roles as mediators of insulin release have therefore received
much attention (12). Previous studies showed that exenatide
(synthetic exendin-4) treatment resulted in lowering fasting
and postprandial plasma glucose concentrations in patients
with type 2 diabetes mellitus (T2DM) (17). GLP-1 is present
and secreted from the L cells of several mammals including pig
and rat (1, 18), and the peptide sequence of GLP-1 is identical
in mouse, rat, and human (19, 20).

GLP-1 and exendin-4 have also been shown to have trophic
effects on the �-cell (21). One mechanism responsible for the
expansion of �-cell mass is inhibition of apoptosis shown for
both GLP-1 and exendin-4 by Farilla et al. (22). The effect of
GLP-1 on apoptosis appears to be mediated by the GLP-1R, and
the expression of the GLP-1R in a nonpancreatic cell line renders
these cells sensitive to the inhibition of programmed cell death by
GLP-1 (23). It has also been shown that human islets treated with
GLP-1 have a down-regulation of caspase 3 at the levels of
mRNA of the active protein and an up-regulation of the anti-
apoptotic protein Bcl-2 (22). A second mechanism responsible
for the expansion of �-cell mass is enhanced cell proliferation.
Mice treated with GLP-1 or exendin-4 show increased cell pro-
liferation by bromodeoxyuridine labeling or by tritiated thymi-
dine incorporation within the islets. The insulin-expressing cells
are stimulated to proliferate by administration of GLP-1 in vivo
(23). GLP-1 increases levels of �-cell cAMP and insulin gene
transcription and stimulates glucose-dependent insulin release
(24); however, unlike other depolarizing agents (such as the sul-
fonylureas), �-cell GLP-1R signaling is glucose dependent (24).
GLP-1 also increases the gene expression and binding activity of
transcription factor pancreatic and duodenal homeobox gene 1
most likely by a phosphatidylinositol-3-kinase-dependent path-
way (25). Elimination of GLP-1R signaling in �-cells is associ-
ated with reduced intracellular cAMP and defective glucose-
stimulated calcium influx (25).

The GLP-1R has been localized to the stomach, duodenum,
exocrine pancreas, brainstem, thalamus, hypothalamus, hip-
pocampus, heart, lung, and kidney, as well as the pancreatic islets
(26). Furthermore, GLP-1 binding sites have been found in mus-
cle cells, adipocytes, and the liver (27–30). The findings of
GLP-1R outside of the islets provides strong evidence that GLP-1
has many extraislet effects and corroborates other studies (31–
34) that show physiological effects of GLP-1 on a variety of
extrapancreatic functions. This review summarizes the function
of GLP-1 on different organs including the stomach, heart, liver,
and the central nervous system (CNS).

GLP-1 Actions on Gastrointestinal Function

The inhibitory function of GLP-1 on gastric emptying and gastric
acid secretion confirms the role of GLP-1 as an important en-
terogastrone, a hormone that inhibits proximal events of the
gastrointestinal tract in a negative feedback manner (26). Nauck
et al. (35) showed that iv administration of GLP-1 (7-36) amide
and GLP-1 (7-37) has similar, profoundly inhibitory effects on
the gastric emptying of a liquid mixed test meal in healthy, nor-
moglycemic volunteers (Fig. 1) and that the effect of GLP-1 on
gastric emptying is dose dependent and highly significant with
physiological concentrations of approximately 25 pmol/liter. In
eight healthy male volunteers, Schirra et al. (36) investigated the
effect of different doses of GLP-1(7-36) amide (0.125 nmol/kg,
0.25 nmol/kg, or placebo) administered sc 5 min before the
mixed meal. They quantified the pattern of gastric emptying of
a mixed meal (300 kcal) as well as pancreatic secretion,
antroduodenal motility, and the glycemic response and the re-
lease of insulin, C-peptide, and glucagon. The lag period or the
time to reach maximal velocity of gastric emptying was dose-
dependently prolonged in response to the sc infusion of GLP-1.
Maximal emptying velocity, total emptying rate, and the expo-
nential emptying rate were not changed, however (36). This
study also showed that the sc infusion of GLP-1 resulted in a
dose-dependent inhibition of duodenal and antral motility; that
both doses of GLP-1 resulted in coordinated antroduodenal con-
tractions; that GLP-1 initially reduced, then transiently stimu-
lated the secretion of pancreatic enzymes; that both doses of
GLP-1 resulted in a delaying postprandial insulin peak and en-
hanced total insulin release; and that the postprandial response
of pancreatic polypeptide and glucagon was diminished. In an-
other study, Schirra et al. (37) showed antro-pyloro-duodenal
motility in humans and the actions of endogenously released
GLP-1 on endocrine pancreas secretion. In their study of nine
healthy volunteers, they used GLP-1R antagonist exendin (9-39)
to test whether GLP-1 acts as an incretin and/or as an entero-
gastrone in humans. They showed that the endogenously re-
leased GLP-1 significantly enhanced postprandial insulin secre-

FIG. 1. The effect of GLP-1 on gastric emptying in man. Residual gastric volume
after mixed liquid meal (8% amino acids plus 50 g sucrose in 400 ml) during iv
infusion of GLP-1 (7-36) amide or (7-37) (means � SE); symbols show different
doses in nine healthy male volunteers. P values represent interaction of
experiment (placebo/GLP-1) and time as calculated by repeated-measures
ANOVA (RM-ANOVA). *, Significant differences (P � 0.05 by Student’s t test)
from experiments with placebo at individual time points. Box, Duration of
infusion of GLP-1/placebo (35).
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tion and suppressed the secretion of glucagon (37). During the
fasting and postprandial state, antro-duodenal motility was in-
hibited by GLP-1, which qualifies GLP-1 as an enterogastrone.
They also showed that the stimulation of pyloric motility that is
induced by intestinal glucose was mediated by GLP-1. The pres-
ence of food in the gut causes the L cells of the intestine to release
GLP-1 into the circulation, which not only stimulates the pan-
creas to produce insulin but also slows gastric emptying and may
lead to a decrease in appetite (38–43).

The mechanisms by which GLP-1 inhibits gastric emptying
appear to be complex and to involve communication with the
central and peripheral nervous systems (44, 45). Gastric disten-
sion increases the expression of c-Fos in brainstem neurons that
produce GLP-1 (46). In addition, administration of GLP-1 cen-
trally resulted in reduction of food intake (47), which is accom-
panied with increased expression of the c-Fos in the brainstem of
the rat (48, 49). The denervation of vagal afferent fibers abolishes
the effects of GLP-1 on gastric emptying in the rat (50). The
stimulation to the CNS is most likely responsible for the reduc-
tion in food intake, inhibition of gastric emptying, as well as
inhibitory action on gastric motor function (47, 50). These ac-
tions are most likely mediated by increased action potential and
calcium influx in neurons of the nodose ganglion (51).

Although small peptides such as GLP-1 and exendin-4 are
capable of rapidly crossing the blood-brain barrier and directly
accessing the CNS, higher molecular weight GLP-1R agonists,
such as albumin-bound GLP-1, that do not cross the blood-brain
barrier are still capable of inhibiting gastric emptying and food
intake (52). These findings indicate the importance of ascending
vagal afferents for GLP-1R-dependent control of gastrointesti-
nal motility. Interestingly, studies by Meier et al. (53) showed
that antagonizing the delaying effects of GLP-1 on gastric emp-
tying by using a prokinetic agent such as erythromycin resulted
in an augmentation of the insulin secretory response after meal
ingestion. GLP-1Rs are also directly expressed in the stomach on
gastric parietal cells, where GLP-1 may directly regulate gastric
acid secretion (54). However, the effects of GLP-1 on gastric acid
secretion were found to be absent in vagotomized human sub-
jects (55). Hence, considerable evidence supports the importance
of vagal innervation for GLP-1 regulation of gastric secretion
and motility.

It should be noted that the effect of delayed gastric emptying
has been generally demonstrated with physiological or supra-
physiological exogenously administered GLP-1 (56, 57). There-
fore, it remains unclear whether endogenously released GLP-1
has a significant effect on gastric emptying. Studies in healthy
baboons have shown that with intragastric infusion of glucose
and D-xylose (a marker for rate of emptying of glucose from
stomach), plasma levels of D-xylose were similar when the effects
of GLP-1 were blocked with exendin (9-36) amide or with a
specific monoclonal antibody to GLP-1 (44, 58). Those findings
suggested that gastric emptying is not increased when the effects
of GLP-1 are blocked, at least in the baboon. The use of a DPP-4
inhibitor, which increases plasma levels of GLP-1, might be ex-
pected to delay gastric emptying, but Vella et al. (59) failed to
observe any changes in the gastric emptying of a solid meal in
patients with T2DM who were treated with such an inhibitor.

Most recently, an iv-oral hyperglycemic clamp study in humans
was reported during which 75 g glucose containing D-xylose was
ingested. During the entire clamp, plasma glucose levels were
held at a steady level despite the ingestion of glucose. Two studies
were conducted, with blockade of GLP-1R in one. The rate of
appearance of ingested D-xylose was not different between the
two studies, indicating that endogenously released GLP-1 has at
best only a modest effect on gastric emptying (60).

In some endocrine systems, negative feedback mechanisms
regulate secretion of the hormone. The classic example is repro-
ductive hormone regulation by the hypothalamus. Exogenous
infusion of hormone may also exert negative feedback regulation
of the endogenously released hormone. An example of this is the
documented suppression of C-peptide levels when insulin is in-
fused (61). In this context, we are not aware of any data that
demonstrate regulation of endogenously released GLP-1 when it
is infused exogenously.

GLP-1 and the Cardiovascular System

Early studies demonstrated the presence of transcripts for GLP-1Rs
in theheart (62),butonly recentlyhas thecellulardistributionof the
receptors been localized. Ban et al. (63) identified GLP-1Rs via im-
munohistochemistry in cardiomyocytes and coronary and vascular
endothelial cells as well as smooth muscle in mice.

Previous studies have shown that exogenous administration
of GLP-1 exhibits both inotropic and chronotropic activity. The
extent to which GLP-1 (7-36) exerts cardiovascular effects via
increased inotropic and chronotropic actions appears to depend
on the integrity of the autonomic nervous system. For example,
Barragan et al. (64) showed that iv administration of GLP-1
dose-dependently increases arterial blood pressure and heart rate
in anesthetized rats. Ahren (26) showed that GLP-1 increased
both systolic and diastolic pressures under anesthesia and that
those effects were not prevented by reserpine, propranolol, or
phentolamine, suggesting a direct action of GLP-1. Yamamoto et
al. (65) showed similar effects after peripheral and central ad-
ministration of GLP-1 in anesthetized rats, observing dose-de-
pendent increases in blood pressure and heart rate. Barragan et
al. (66) showed that administration of the GLP-1R agonist, ex-
endin-4, also increases blood pressure and heart rate in anesthe-
tized rats. Notably, the pressor and chronotropic responses seen
in rodents were not evident in normal conscious, chronically
instrumented dogs over a dose range of 1–20 pmol � kg�1 � min�1

(67). Nikolaidis et al. (67) showed that myocardial function and
cardiac output were improved after administration of GLP-1 in
conscious, chronically instrumented canine models of cardiac
injury or heart failure. GLP-1 increased cardiac output and re-
duced left ventricular end diastolic pressure in association with
reduced systemic vascular resistance, and it improved myocar-
dial insulin sensitivity and myocardial glucose uptake in dogs
with rapid pacing-induced dilated cardiomyopathy (67). A clin-
ical study showed that GLP-1 improves left ventricular ejection
fraction and functional status in patients with congestive heart fail-
ure, without affecting heart rate or blood pressure, suggesting a
mechanism other than direct inotropic or chronotropic effects (68).

J Clin Endocrinol Metab, June 2009, 94(6):1843–1852 jcem.endojournals.org 1845



GLP-1 has been shown to reduce infarct size in the isolated
perfused rat heart subjected to complete coronary artery occlu-
sion (69, 70). When the cAMP inhibitor Rp-cAMP was present,
the infarct-sparing actions of GLP-1 were abolished, implicating
a cAMP-dependent mechanism. In these studies, GLP-1 was also
associated with increased Akt expression, although these inves-
tigators did not measure myocardial glucose uptake. In contrast,
Zhao et al. (71) demonstrated that GLP-1 (7-36) in normal rat
hearts altered resting contractility and heart rate through a non-
Akt-dependent mechanism. Specifically, these investigators
showed that GLP-1, in contrast to insulin, had no effect on Akt
phosphorylation or activation and did not result in increased
glucose transporter (GLUT)-4 translocation, despite increased
myocardial glucose uptake. Rather, GLP-1 (7-36) increased p38
MAPK activation, nitric oxide expression, and GLUT-1 trans-
location. Under circumstances of low flow ischemia, GLP-1 (7-
36) mitigated myocardial stunning. Thus, the cellular signaling
effects of GLP-1 (7-36) vary depending on the experimental cir-
cumstances (partial vs. complete coronary artery occlusion).

Remarkably, GLP-1 also exerts beneficial effects on cardiac
function in human subjects after myocardial infarction and an-
gioplasty. In one study, a 72-h infusion of GLP-1 in patients with
acute myocardial infarction and ejection fractions less than 40%
resulted in significantly improved left ventricular ejection frac-
tion and improved regional and global wall motion scores, and
it was associated with earlier hospital discharge (34) (Fig. 2). In
a randomized study of the effects of GLP-1 on patients under-
going coronary artery bypass grafting, Sokos et al. (72) showed
that the need for inotropic support and exogenous insulin was
significantly reduced in patients who received GLP-1.

Whether the beneficial effects of GLP-1 on the injured heart
are primarily directed via activation of cardiac GLP-1R signaling
or indirectly via GLP-1R-dependent improvement in levels of
glucose and insulin requires further investigation. The findings of
a direct, cardioprotective effect in the isolated perfused rat and

mouse heart argue strongly for the former
(63, 71). However, it remains to be deter-
mined whether the cardioprotective effects
are attributable to the increase in myocar-
dial glucose uptake and glycolytic ATP or
activation of distinct but related cellular
pathways implicated in ischemic pre- or
postconditioning.

The agonists of GLP-1R have been
shown to have vascular and cardiac actions
in humans as well as in rodents; these ac-
tions include the effects on cardiac output,
blood pressure, contractility (65, 66, 68,
73), and cardioprotection (34, 67, 70, 74).
Previous studies showed that GLP-1 is be-
lieved to exert its action through heptahe-
lical G protein-coupled receptor (GLP-1R),
which is functionally associated with ade-
nylate cyclase through the stimulatory Gs
(75, 76). Whether these mechanisms are op-
erative and account for the putative bene-
ficial effects of GLP-1 agonists remains to

be determined conclusively. These studies will have important
implications on the ultimate role of these agonists because
chronic cAMP generation may be deleterious in clinical cardio-
vascular conditions. Moreover, the dose of the GLP-1 agonists
that elicits a beneficial cardiovascular effect tends to be greater
than the native peptide, raising important considerations of li-
gand-receptor interaction.

The demonstration that GLP-1 (9-36) amide, the principal
metabolite of GLP-1, improves myocardial glucose uptake and
ventricular contractility in dogs with pacing-induced dilated car-
diomyopathy suggests that some of the cardiovascular effects of
native GLP-1 may be mediated by a mechanism independent of
the known GLP-1R (77). Ban et al. showed that GLP-1 (9-36)
had favorable effects on postischemic contractile dysfunction in
mice when administered after but not before occlusion. These
investigators have suggested a two pathway schema for cardio-
vascular actions of GLP-1. The first depends on the GLP-1R
action for inotropic, glucose uptake, ischemic preconditioning,
and mild vasodilatory actions. The second pathway depends on
the rapid degradation of GLP-1 to GLP-1m. Their data are com-
patible with the notion that although GLP-1m is not an inotrope,
it has a small, significant cardioprotective effect in the setting of
ischemic reperfusion injury. This is due to an increase of glucose
uptake and vasodilation through a nitric oxide/cGMP-depen-
dent pathway (63, 78, 79). These findings have important im-
plications for the role of DPP-4 inhibition in the clinical utility of
incretin biology.

Although the majority of experimental studies have used
acute exposure to GLP-1 in assessing cardiovascular effects, a
recent study by Poornima et al. (79) has examined the effects of
3 months of continuous infusion of GLP-1. These investigators
demonstrated that chronic infusions of GLP-1 improved survival
and preserved cardiac function in a rodent model of diabetes and
hypertension that develops dilated cardiomyopathy and dies pre-
maturely. These studies indicate that the salutary effects of

FIG. 2. The effect of GLP-1 on cardiac ejection fraction and wall motion in patients with acute myocardial
infarction. A, Changes in left ventricular ejection fraction (LVEF) after 72 h of recombinant GLP-1 infusion
vs. control subjects. Lower panel illustrates individual data. B, Changes in regional wall motion score at the
per-infarct zone in recombinant GLP-1-treated patients vs. control subjects. Lower panel illustrates the
individual data (34).
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GLP-1 on cardiovascular performance are sustained after
chronic exposure. Thus, the emerging cardiovascular profile of
GLP-1 together with its effective antiglycemic actions portend
significant clinical benefits in the treatment of T2DM where ther-
apies that reduce macrovascular outcomes have been elusive.

GLP-1 Actions on the Liver

The hepatoportal region may be an important site of action of
GLP-1 because there is a rapid degradation of GLP-1 in the
plasma after its secretion into the mesenteric venous bed. During
the postprandial phase, the concentration of GLP-1 increases in
the mesenteric-portal venous system.

The effect of GLP-1 on hepatic glucose production has been
reviewed by D’Alessio et al. (80). In vitro studies supporting
GLP-1 effects on liver cells are most convincing from the labo-
ratory of Valverde et al. (27) who showed that GLP-1 promotes
glycogen accumulation in cultured rat liver cells. They observed
that GLP-1 increases the activity of glycogen synthase-A, de-
creases the activity of glycogen phosphorylase-A, and promotes
the incorporation of labeled glucose into glycogen in isolated rat
hepatocytes. They also showed that these effects of GLP-1 are
concentration dependent and increase with increasing levels of
glucose. These effects of GLP-1 can also be reproduced with
exendin and blocked by GLP-1R antagonist exendin (9-39)
amide. The increased glycogen accumulation by GLP-1 or insulin
is significantly reduced when glucagon is added to the media,
which is also accompanied by a significant reduction in cAMP
(27, 81, 82).

An in vivo dog study by Dardevet et al. (32) suggested the
presence of GLP-1 sensors or receptors in the hepatoportal re-
gion. They showed that the insulin-independent effect of GLP-1
on hepatic glucose uptake is consistent with the presence of spe-
cific GLP-1Rs that could activate kinases and/or factors involved
in glycogen synthesis and glucose uptake.

In a study to evaluate the beneficial therapeutic effects of
exendin on hepatic steatosis in ob/ob mice (16), it was shown that
GLP-1 and exendin-4 both have the potential for a direct lipid-
lowering effect on hepatocytes, making either peptide a potential
candidate for the treatment of nonalcoholic fatty liver disease.
The presence of GLP-1Rs in isolated rat hepatocytes was shown
in this study by an immunoblot analysis. However, in contrast to
the study of Valverde et al. (27), GLP-1 and exendin-4 resulted
in a marked increase in cAMP production; when the hepatocytes
were pretreated with the GLP-1R antagonist exendin (9-39), the
activity of cAMP was significantly reduced to below basal levels.

In addition to its role in hepatic glucose uptake and glycogen
formation, GLP-1 may also mediate the regulation of hepatic
glucose output by insulin. The hepatic insulin receptor (IR) and
the hepatocyte membrane-bound GLUT2 have been shown to be
internalized into the endosomal compartment after feeding or
insulin administration (83), and the internalization of hepato-
cyte GLUT2 appears to mediate the suppression of hepatic glu-
cose output by insulin (84). The endocytosis of the hepatic IR and
GLUT2 appears coupled, suggesting an IR-GLUT2 complex on
the hepatocyte plasma membrane (85). In states of apancreatic

diabetes, such as chronic pancreatitis, the internalization of the
IR-GLUT2 complex is impaired, and hepatic glucose production
becomes unresponsive to suppression by insulin (86). Treatment
with GLP-1 in rats with chronic pancreatitis was found to reverse
this impairment (87), suggesting a role for GLP-1 in the regula-
tion of IR and GLUT2 endocytosis, and therefore hepatic glucose
production.

Our group showed that an infusion of GLP-1 in obese vol-
unteers resulted in an increase in glucose uptake that was not the
result of increased endogenous insulin secretion (88). These re-
sults were similar to what Dardevet et al. (32) found, i.e. that
pharmacological doses of GLP-1 resulted in increased glucose
utilization, independent of changes in insulin. Such human stud-
ies and others in pigs and dogs suggest an important extrapan-
creatic effect of the principal metabolite of GLP-1, GLP-1 (9-36)
amide, or GLP-1m. GLP-1m was previously found to lack insu-
linotropic activity and has therefore been considered to be bio-
logically inactive (89). It has been shown that infusion of GLP-1
(7-36) amide results in high levels of GLP-1m because of its
cleavage by DPP-4 in plasma (11, 90). Indeed, we and others have
shown that when steady-state levels were achieved during infu-
sion of full-length peptide, approximately 80% of the circulating
plasma levels of peptide were in the form of GLP-1m (88, 90).
Therefore we hypothesized that the insulinomimetic action of
GLP-1 might be due to GLP-1m formation, and we undertook
glucose clamp studies in lean and obese subjects with the aim of
elucidating the effects of GLP-1m. Glucose turnover was mea-
sured during two 2-h euglycemic clamp studies in which saline or
GLP-1m was infused from 0 to 60 min. Half of the volunteers
underwent a third clamp in which the known GLP-1R was
blocked with the infusion of the GLP-1 (7-36) antagonist, ex-
endin (9-39) amide, starting 60 min before infusion of GLP-1m.
In lean subjects, no glucose infusion was necessary to sustain
euglycemia during saline or GLP-1m infusion. However, in obese
subjects glucose infusion was necessary during GLP-1m infusion
because of a marked (�50%) inhibition of hepatic glucose pro-
duction. Plasma insulin levels remained constant in lean subjects
but rose significantly in obese subjects after termination of the
peptide infusion. During GLP-1R blockade, infusion of glucose
was immediately required, on starting GLP-1m infusions, in all
subjects because of a more dramatic reduction in hepatic glucose
production and a delayed and modest insulinotropic response
(33). Thus, GLP-1m inhibits hepatic glucose production and is a
weak insulinotropic agent (Fig. 3). These properties are espe-
cially apparent and pronounced in obese subjects and only be-
come apparent in lean subjects during GLP-1R blockade. These
previously unrecognized antidiabetogenic actions of GLP-1m,
which is always generated when GLP-1 (7-36) is administered or
secreted, suggest a role for GLP-1m as a therapeutic agent in
controlling blood glucose (33).

The observation noted above that GLP-1m improved myo-
cardial glucose uptake and ventricular contractility in dogs with
dilated cardiomyopathy equally as GLP-1 (7-36) suggests that a
putative GLP-1m receptor may be present in cardiac tissue (77).
Increased functional recovery and cardiomyocyte viability after
ischemic reperfusion injury in isolated hearts from wild-type
mice were also observed in mice lacking a functional GLP-1R
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(Glp1r�/�) (63), which further supports this possibility. Further-
more, in the latter study, a reduction of ischemic change was
observed during reperfusion when GLP-1m was administered
both in wild-type and Glp1r�/� mice. This was accompanied
with increased cGMP release, vasodilation, and coronary flow.
Taken together, the data from animal and human studies
strongly demonstrate that in both the cardiac tissue and the liver,
the action of GLP-1m is not mediated through activation of the
known GLP-1R, which suggests that a yet unidentified GLP-1m
receptor is present in these tissues.

Despite these reports of an insulin-independent effect of
GLP-1 (or GLP-1m) on the liver, and despite other in vitro studies
that demonstrate effects that are attributable to a presumed he-
patic GLP-1R, it is acknowledged that there is controversy with
respect to GLP-1 (or GLP-1m) effects in the liver, muscle, and
adipose tissue (31), and the presence and/or species differentia-
tion of an identifiable receptor in these tissues (91, 92). GLP-1m
has been administered in humans by other investigators (89, 93)
and in general did not show any effect. However, the design of
these studies did not allow for evaluation of effects of GLP-1m
because it was infused along with GLP-1, or with DPP-4 inhib-
itors, and tracers were not used to determine site-specific glucose
kinetics. Our observation that GLP-1m infusion results in the
suppression of hepatic glucose production (33) strongly suggests
a role of GLP-1m on hepatic glucose production. In the absence
of measurements of hepatic glucose dynamics, these effects
would appear to result in enhanced insulin sensitivity after
GLP-1 infusion.

GLP-1 and the CNS

GLP-1 is synthesized in the caudal part of the nucleus of the
solitary tract (94), and its receptors are widespread throughout
the brain, particularly in the paraventricular nucleus (48, 95, 96).
The presence of GLP-1 and the GLP-1R in the CNS indicate that

GLP-1 also acts centrally in addition to its actions
on the peripheral system. It has been shown previ-
ously that injection of GLP-1 intracisternally causes
a delay of liquid gastric emptying (50). Nakade et al.
(97) showed that the peripheral sympathetic ner-
vous system and the central corticotropin-releasing
factor receptors are involved in the central GLP-1-
mediated delay of solid gastric emptying in rats.

Nishizawa et al. (98) showed that administra-
tion of GLP-1 into the portal vein increases the fir-
ing frequency in the vagal afferents in rats. This
suggests that the release of GLP-1 from the gut is
rapidly signaled to the brain through this afferent
pathway (98). This may represent the functional
basis for neurally mediated inhibition of gastric
emptying, gastric acid secretion, and exocrine pan-
creatic secretion by GLP-1, effects that have been
shown to require intact sensory and efferent para-
sympathetic nerves (26).

Intracerebroventricular administration of GLP-1R
agonists inhibits food intake in rodents (96, 99),

and GLP-1Rs have been localized to hypothalamic nuclei, which
are important for the regulation of satiety. Repeated intracere-
broventricular administration of GLP-1 in rats produces weight
loss (Fig. 4), whereas intracerebroventricular administration of
the GLP-1R antagonist exendin (9-39) for 3 d produced weight
gain, and exendin (9-39) administered together with the central
orexigenic agent neuropeptide Y resulted in an increased food
intake and weight gain compared with that observed with neu-
ropeptide Y alone (100). It should be noted that the L cells core-
lease GLP-1 and peptide YY (PYY), and immunohistological
studies have shown that these peptides are colocalized and core-
leased from these cells. PYY (3-36), the major circulating form of
PYY, has been shown to be a potent orexigenic agent in rats and
man (101, 102). Evidence therefore supports the corelease of
GLP-1 and PYY as having important roles as mediators of sati-
ety. It has been shown that GLP-1 may regulate the hypothalamic
pituitary axis via effects on LH, TSH, CRH, oxytocin, and va-
sopressin secretion (103, 104). The available evidence suggests
that taste and/or food aversion induced by GLP-1 is mediated by
different CNS pathways (47, 99, 105).

FIG. 3. The effect of GLP-1m on hepatic glucose production in man. Rates of appearance of
glucose (Ra, top panel) in 12 lean (left) and 12 obese (right) volunteers who received GLP-1 (9-36)
amide (GLP-1m) or saline from 0 to 60 min. Rates of appearance of glucose (bottom panel) in
seven lean (left) and six obese (right) volunteers who received GLP-1m from 0 to 60 min. Exendin
(9-39) amide was infused from �60 to 60 min (mean � SE). *, Significant difference between the
two studies at indicated times (33).

FIG. 4. The effect of intracerebroventricular (icv) GLP-1 on body weight in the
rat. Body weight after daily icv injection of GLP-1 or saline. The solid circles
represent animals given 3 nmol GLP-1, and open circles represent control animals
that received saline (100).
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GLP-1 and PYY are secreted not only from L cells in the small
intestine (from duodenum to ileum, with the greatest concentra-
tion in the ileum) but also from mammalian taste cells. Egan and
colleagues (106) have shown that human duodenal L cells and
taste cells of the tongue express the sweet taste receptor G protein
gustducin, which is probably involved in the regulation of GLP-1
release. These investigators have shown that in many L cells,
GLP-1, gustducin, and PYY are colocalized. They also have
shown that GLP-1 is produced in two subsets of mammalian
taste cells (type 2 and type 3) and that GLP-1Rs are present on
adjacent intragemmal afferent nerve fibers (107). It is possible
that GLP-1 (and PYY) activate the CNS events resulting in an
anorexigenic effect, before stimulating islet hormones (108).
Chronic peripheral administrations of GLP-1R agonists (Ex-
endin, Liraglutide) have been consistently associated with re-
ductions in food intake and weight loss in rats and humans (109–
112). However, in a study of continuous sc administration of
GLP-1 for 6 wk at a rate of 4.8 pmol � kg�1 � min�1, only 1.9 kg
of weight loss was documented (113). Furthermore, in a 12-wk
continuous sc administration study of a lower dose of GLP-1 (1.5
pmol � kg�1 � min�1), there was no weight loss (114). Therefore,
it is possible that, in humans, reduction of appetite by GLP-1 is
manifested only acutely and does not persist long term. Alter-
natively, to demonstrate weight loss with exogenous GLP-1 ad-
ministration, much larger doses are required.

Cabou et al. (115) showed that brain GLP-1R signaling si-
multaneously controls heart rate, femoral arterial blood flow,
and glucose utilization in an awake free-moving mouse, and that
brain GLP-1 signaling regulates reactive nitric oxide and reactive
oxygen species that are likely important for the coordinated reg-
ulation of metabolic and cardiovascular function. An increase in
vagus nerve activity was associated with brain to periphery sig-
naling, implying that the action of GLP-1R signaling for control
of nitric oxide and reactive oxygen species is also glucose de-
pendent (115). Previous studies showed that GLP-1 was able to
relax the femoral artery tone in a dose-response manner in rats
(116) and that it is associated with vasodilatation induced by
acetylcholine (117). On the other hand, when GLP-1 or its an-
alogs is infused systemically in humans, it does not induce hyper-
or hypotension as has been seen in animals (68, 118).

Conclusions

Our understanding of the extrapancreatic effects of the incretin
hormones has expanded exponentially over the past two de-
cades, and it is clear that GLP-1, exendin-4, and GLP-1m all have
actions beyond the pancreatic islets (Fig. 5). The roles of these
peptides on peripheral organs such as the gastrointestinal tract,
CNS, and heart appear well established. The roles of GLP-1 and
GLP-1m in the liver remain to be clarified and await consensus
on the localization of receptors for GLP-1 and GLP-1m on the
hepatocyte. Although many of the extrapancreatic effects of
GLP-1 appear to be insulinomimetic, it is possible that some
mechanisms of action by GLP-1 and/or GLP-1m are independent
of insulin-regulated pathways. That GLP-1 has a broad range of
effects in nutrient metabolism and energy balance is now clear.

It is also clear that an exciting spectrum of possible therapeutic
applications is rapidly emerging.
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28. Villanueva-Peñacarrillo ML, Alcántara AI, Clemente F, Delgado E, Valverde
I 1994 Potent glycogenic effect of GLP-1(7-36)amide in rat skeletal muscle.
Diabetologia 37:1163–1166

29. Galera C, Clemente F, Alcantara A, Trapote MA, Perea A, Lopez-Delgado
MI, Villanueva-Penacarrillo ML, Valverde I 1996 Inositolphosphoglycans
and diacyglycerol are possible mediators in the glycogenic effect of GLP-1(7-
36)amide in BC3H-1 myocytes. Cell Biochem Funct 14:43–48

30. Wheeler MB, Lu M, Dillon JS, Leng XH, Chen C, Boyd 3rd AE 1993 Func-
tional expression of the rat glucagon-like peptide-I receptor, evidence for
coupling to both adenylyl cyclase and phospholipase-C. Endocrinology 133:
57–62

31. Holst JJ 2007 The physiology of glucagon-like peptide 1. Physiol Rev 87:
1409–1439

32. Dardevet D, Moore MC, Neal D, DiCostanzo CA, Snead W, Cherrington AD
2004 Insulin-independent effects of GLP-1 on canine liver glucose metabo-
lism: duration of infusion and involvement of hepatoportal region. Am J
Physiol Endocrinol Metab 287:E75–E81

33. Elahi D, Egan JM, Shannon RP, Meneilly GS, Khatri A, Habener JF, Andersen
DK 2008 GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36) amide, is a
glucoregulatory peptide. Obesity 16:1501–1509

34. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP
2004 Effects of glucagon-like peptide-1 in patients with acute myocardial
infarction and left ventricular dysfunction after successful reperfusion. Cir-
culation 109:962–965

35. Nauck MA, Niedereichholz U, Ettler R, Holst JJ, Orskov C, Ritzel R, Schmiegel
WH 1997 Glucagon-like peptide 1 inhibition of gastric emptying outweighs its
insulinotropic effects in healthy humans. Am J Physiol 273:E981–E988

36. Schirra J, Kuwert P, Wank U, Leicht P, Arnold R, Göke B, Katschinski M
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