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Secretory vesicles in live cells are not free-floating but tethered to
filamentous structures: A study using photonic force microscopy
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Abstract

It is well established that actin and microtubule cytoskeletal systems are involved in organelle transport and membrane trafficking in

cells. This is also true for the transport of secretory vesicles in neuroendocrine cells and neurons. It was however unclear whether

secretory vesicles remain free-floating, only to associate with such cytoskeletal systems when needing transport. This hypothesis was

tested using live pancreatic acinar cells in physiological buffer solutions, using the photonic force microscope (PFM). When membrane-

bound secretory vesicles (0.2–1.2 mm in diameter) in live pancreatic acinar cells were trapped at the laser focus of the PFM and pulled,

they were all found tethered to filamentous structures. Mild exposure of cells to nocodazole and cytochalasin B, disrupts the tether.

Immunoblot analysis of isolated secretory vesicles, further demonstrated the association of actin, myosin V, and kinesin. These studies

demonstrate for the first time that secretory vesicles in live pancreatic acinar cells are tethered and not free-floating, suggesting that

following vesicle biogenesis, they are placed on their own railroad track, ready to be transported to their final destination within the cell

when required. This makes sense, since precision and regulation are the hallmarks of all cellular process, and therefore would hold true

for the transport and localization of subcellular organelles such as secretory vesicles.

r 2006 Elsevier B.V. All rights reserved.

PACS: 07.79.Lh

Keywords: Cell secretion; Photonic force microscopy; Live secretory cells; Secretory vesicle tether
1. Introduction

It has become increasingly clear that the movement of
organelles in cells can be attributed to two groups of motile
systems, one based on microtubules, and the other based
on actin. Microtubules have been recognized as the
railroad for movement of organelles over long distances
within the cell (41 mm), where as the actin system is
responsible for transport over shorter distances, typically
from tens to a few hundred nanometers. Thus, micro-
tubule-dependent motors such as kinesin and kinesin-
related proteins, and the superfamily of actin-dependent
front matter r 2006 Elsevier B.V. All rights reserved.
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myosin motors, have all been implicated in intracellular
organelle transport [1,2]. Myosin motors include the
conventional myosin (myosin II) and a large group of
unconventional myosins (myosin I, III, V, and VI). In
recent years, the prime candidate for secretory vesicle
transport in cells has been reported to be the class V of
myosin motors [3–5]. Myosin V is composed of two heavy
chains that dimerise via a coiled-coil motif, located in the
stalk region of the heavy chain [6]. The heavy chain
contains an amino-terminal actin-binding motor domain
[6], followed by a neck region where up to six regulatory
light chains can bind. The carboxy-terminus globular
domain of the heavy chain is thought to mediate
organelle-binding specificity [7]. Interaction between the
actin and the microtubule transport system, seems to be a
requirement for the correct delivery of intracellular cargo
such as secretory vesicles [8–10].
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Although some information is available on the transport
system of secretory vesicles, little is understood about the
timing of association of these vesicles with the transport
system. The present study was undertaken to determine
whether secretory vesicles in live cells remain free-floating,
only to associate with the transport systems following a
secretory stimulus, or whether they are always tethered.
Isolated live pancreatic acinar cells were used in the present
study. Our results demonstrate that all secretory vesicles
within live pancreatic acinar cells are tethered and not free-
floating. Nocodazole and cytochalasin B disrupt much of
this tether. Immunoblot analysis of isolated secretory
vesicles, further determines the association of actin, myosin
V, and kinesin to them. These studies demonstrate for the
first time that secretory vesicles in live pancreatic acinar
cells are tethered and not free-floating, suggesting that
following vesicle biogenesis, they are placed on their own
specific railroad track, ready to be transported to their final
destination when required. This makes sense, since preci-
sion and regulation are the hallmark of all cellular process,
and therefore would also hold true for the transport and
localization of subcellular organelles within the cell.
2. Materials and methods

2.1. Isolation of pancreatic acinar cells

Isolation and preparation of acinar cells for photonic
force microscopy (PFM) were performed using minor
modifications of a published procedure [11]. For each
experiment, a male Sprague–Dawley rat weighing 80–100 g
was euthanized by carbon dioxide inhalation. The pancreas
was excised and chopped into 0.5-mm3 pieces, which were
mildly agitated for 10min at 37 1C in a siliconized glass
tube with 5ml of oxygenated buffer A (98mM NaCl,
4.8mM KCl, 2mM CaCl2, 1.2mM MgCl2, 0.1% bovine
serum albumin, 0.01% soybean trypsin inhibitor, 25mM
Hepes, pH 7.4) containing 1000 units of collagenase. The
suspension of acini was filtered through a 224 mm Spectra-
Mesh (Spectrum Laboratory Products, Saint Paul, MN,
USA) polyethylene filter to remove large clumps of acini
and undissociated tissue. The acini were washed six times,
50ml per wash, with ice-cold buffer A. Isolated rat
pancreatic acini and acinar cells were plated on Cell-Tak-
coated (Collaborative Biomedical Products, Bedford, MA,
USA) glass cover slips or mica An hour after plating, cells
were used in our studies, before and after exposure to
10 mM nocodazole and 20 mM cytochalasin B for 1min,
followed by six washes (10 vol/wash) in buffer A at room
temperature (RT).

2.2. Isolation of Zymogen granules

Zymogen granules (ZG) were isolated according to a
minor modification of a published procedure [12]. The
pancreas from male Sprague–Dawley rats was dissected
and diced into 0.5-mm3 pieces before being suspended in
15% (wt/vol) ice-cold homogenization buffer (0.3M
sucrose, 25mM Hepes, pH 6.5, 1mM benzamidine,
0.01% soybean trypsin inhibitor) and homogenized using
3 strokes of a Teflon-glass homogenizer. The homogenate
was centrifuged for 5min at 300� g at 4 1C. The super-
natant fraction was mixed with 2 vol of a Percoll–Sucro-
se–Hepes buffer (0.3M sucrose, 25mM Hepes, pH 6.5,
86% Percoll, 0.01% soybean trypsin inhibitor) and
centrifuged for 30min at 16,400� g at 4 1C. Pure ZGs
were obtained as a loose white pellet at the bottom of the
centrifuge tube, and used in the study.

2.3. Isolation of synaptic vesicles

Synaptic vesicles (SV) were prepared from rat brains
using minor modification of published procedure [13,14].
Whole rat brain from Sprague–Dawley rats (100–150 g)
were isolated and placed in ice-cold buffered sucrose
solution (5mM Hepes pH 7.4, 0.32M sucrose) supplemen-
ted with protease inhibitor cocktail (Sigma, St. Louis, MO)
and homogenized using Teflon-glass homogenizer (8–10
strokes). The total homogenate was centrifuged for 3min
at 2500� g. The supernatant fraction was further centri-
fuged for 15min at 14,500� g, and the resultant pellet was
resuspended in buffered sucrose solution, which was loaded
onto 3–10–23% Percoll gradients. After centrifugation at
28,000� g for 6min, the enriched synaptosomal fraction
was collected at the 10–23% Percoll gradient interface. To
isolate SV, the isolated synaptosomes were diluted with
9 vol of ice-cold H20 (hypotonic lysis of synaptosomes to
release SV) and immediately homogenized with three
strokes in Dounce homogenizer, followed by a 30min
incubation on ice. The homogenate was centrifuged for
20min at 25,500� g, and the resultant supernatant
(enriched SV preparation) were used in our studies.

2.4. Photonic force microscopy

In case of the PFM [15] the mechanical cantilever of the
atomic force microscope (AFM) is replaced by the 3-D
trapping potential of a laser focus. In the PFM, a nano- to
micrometer-sized particle, such as latex, glass or metal bead
is used as a tip. In the present study, however, 0.2–1.2 mm
isolated secretory vesicles in buffer, or secretory vesicles
within live pancreatic acinar cells, were trapped by the 3-D
trapping potential of the laser focus of the PFM, and
pulled in different directions. The difference in the
refractive index between the medium and the trapped
particle, the diameter of the particle, the laser intensity and
the intensity profile in the focal volume, determine the
strength of the trapping potential and in this way the forces
that can be applied. The trapped vesicle can be pulled in
various directions at forces of several tens of pN, and the
movement can be observed using a video camera mounted
on the microscope. Furthermore, the 3-D position of the
trapped vesicle with respect to the laser focus can be
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Fig. 2. Actin and microtubule motors are associated with secretory

vesicles. Immunoblot analysis of zymogen granules (ZG) and synaptic

vesicles (SV) demonstrate the presence of actin and myosin V. Kinesin, the

microtubule motor, is also found in ZG.
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determined with a spatial resolution of about one
nanometer, and a temporal resolution of 10 ms using a
quadrant photodiode positioned at the back-focal plane of
the microscope consider [16] allowing to determine the
forces acting on the vesicle.

2.5. Immunoblot analysis

ZG from the exocrine pancreas, and SV from brain
tissue, were isolated and used in this study. Actin and
Myosin V antibodies were purchased from Sigma (St.
Louis, MO), and Kinesin antibody was obtained from
Santa Cruz Biotechnology Inc. (Santa Cruz, CA). For
immunoblot analysis, solubilized ZG or SV proteins were
resolved using 12.5% SDS-PAGE, followed by electro-
transferred to nitrocellulose. The nitrocellulose membrane
with transferred proteins were incubated for 45min at 4 1C
in blocking buffer (5% non-fat milk in PBS containing
0.1% Tween 20), and immunoblotted for 1 h at RT with
the specific antibody in PBS-Tween (PBS containing 0.1%
Tween 20) buffer. Resolved ZG proteins were probed using
actin and kinesin antybodies, at a dilution of 1:400, and the
myosin V at a dilution of 1:3,000 in PBS-Tween. Similarly,
for resolved SV proteins, actin and Myosin V were used at
a dilution of 1:1,000. The immunoblotted nitrocellulose
sheets were washed three times in PBS-Tween, followed by
incubation for 30min at RT in horseradish peroxidase-
conjugated secondary antibody (1:3,000) in PBS-Tween.
The immunoblots were then washed three times in the PBS-
Tween, processed for enhanced chemiluminescence and
photographed using a Kodak Image Station 414.

3. Results and discussion

Secretory vesicles in isolated live pancreatic acinar cells
in near physiological buffer were trapped using the 3-D
trapping potential of the PFM laser focus. When attempts
were made to move the vesicles in live cells by moving the
laser trap of the PFM, they resisted movement in all
directions. However, when the same live cells were exposed
to 10 mM nocodazole and 20 mM cytochalasin B for 1min
at RT and washed, resulting in limited dissociation of
microtubules and actin, vesicles trapped in the PFM laser
focus could now be moved, for example, towards the
Fig. 1. Secretory vesicles (yellow arrowhead) are tethered and not free-floa

originating from the supranuclear region (above the nucleus, N) of the cell. Pret

allows individual secretory vesicles to be pulled, when trapped in the laser foc
plasma membrane of the cell, as depicted in Fig. 1. On
close examination, a tether (red arrow head) appearing to
originate at the supranuclear region of the cell (the Golgi
complex), is found attached to the trapped vesicle (yellow
arrow head) (Fig. 1). As previously reported in neurons
and neuroendocrine cells [3–5], this study suggests that
secretory vesicles in the exocrine pancreas are also
transported on actin and microtubule systems to their
destination at the cell plasma membrane following their
biogenesis at the Golgi complex. On immunochemical
examination of isolated secretory vesicles of the exocrine
pancreas and neurons, actin, myosin V and kinesin, were
found associated (Fig. 2), further confirming the involve-
ment of both the actin and microtubule systems in
intracellular transport of secretory vesicles in cells.
Although, the presence of the motor proteins myosin and
kinesin in secretory vesicles of the exocrine pancreas made
sense, the presence of actin was puzzling. One possibility
for the association of actin in such isolated secretory
vesicles could be the broken-off remnant pieces of actin
filaments associated with myosin V at the vesicle mem-
brane, following cellular rupture and vesicle isolation.
Alternately, actin may associate with secretory vesicles for
ting in live pancreatic acinar cells. Note vesicle tether (red arrowhead)

reatment of a live pancreatic acinar cells with nocodazole and cytochalasin,

us of the PFM.
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Fig. 3. Isolated secretory vesicles do not bind each other. (A) When an isolated ZG (red arrowhead) trapped at the PFM laser focus is brought in contact

with a fixed isolated ZG (green arrowhead)using the maximum force possible with the PFM (B), they fail to exhibit any binding interaction and can be

pulled apart easily (C).
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other unknown functions, such as the interactions between
secretory vesicles. To test this hypothesis, the interaction
between isolated secretory vesicles was examined. When
isolated secretory vesicle trapped at the PFM laser focus
was pressed against another fixed secretory vesicle, no
binding interactions were observed between them (Fig. 3).
This study demonstrates that no detectable interactions
exist between isolated vesicles, hence there is no interaction
between the actin of one vesicle with the myosin of another.
It is very likely that during isolation of secretory vesicles,
actin filaments associated with myosin V at the vesicle
membrane, break-off and remain associated with the
vesicle via myosin V. These studies demonstrate for the
first time that secretory vesicles in live cells are tethered and
not free-floating, suggesting that following vesicle biogen-
esis, it is placed on its own railroad track, ready to be
transported to its final destination within the cell when
required. This makes sense, since precision and regulation
are the hallmark of any cellular process, and therefore
would hold true for the transport and localization of
subcellular organelles in cells.
Acknowledgements

This work was supported by NIH Grants DK56212 and
NS39918 (B.P.J).
References

[1] S.A. Kuznetsov, G.M. Langford, D.G. Weiss, Nature 356 (1992) 722.

[2] T.A. Schroer, M.P. Sheetz, Annu. Rev. Physiol. 53 (1991) 629.

[3] L.L. Evans, A.J. Lee, P.C. Bridgman, M.S. Mooseker, J. Cell Sci. 111

(1998) 2055.
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